高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法

张天骐 全盛荣 强幸子 江晓磊

张天骐, 全盛荣, 强幸子, 江晓磊. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333-1339. doi: 10.11999/JEIT160750
引用本文: 张天骐, 全盛荣, 强幸子, 江晓磊. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333-1339. doi: 10.11999/JEIT160750
ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, JIANG Xiaolei. Time-frequency Analysis Method Based on Multi-scale Chirplet Sparse Decomposition and Wigner-Ville Transform[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1333-1339. doi: 10.11999/JEIT160750
Citation: ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, JIANG Xiaolei. Time-frequency Analysis Method Based on Multi-scale Chirplet Sparse Decomposition and Wigner-Ville Transform[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1333-1339. doi: 10.11999/JEIT160750

基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法

doi: 10.11999/JEIT160750
基金项目: 

国家自然科学基金(61671095, 61371164, 61275099),信号与信息处理重庆市市级重点实验室建设项目(CSTC2009 CA2003),重庆市教育委员会科研项目(KJ130524, KJ1600427, KJ1600429)

Time-frequency Analysis Method Based on Multi-scale Chirplet Sparse Decomposition and Wigner-Ville Transform

Funds: 

The National Natural Science Foundation of China (61671095, 61371164, 61275099), The Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003), The Research Project of Chongqing Educational Commission (KJ130524, KJ1600427, KJ1600429)

  • 摘要: 针对多分量多项式相位信号(mc-PPS)的Wigner-Ville分布存在的时频干扰问题,该文提出一种基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法。该方法采用多尺度的Chirplet基函数对信号进行投影分解,通过延时相关解调的分数阶傅里叶变换(FRFT)搜索投影系数最大的基函数,将搜索得到的基函数通过Wigner-Ville变换和最佳路径连接方法,逐次获得使分解信号能量最大的信号分量及其时频分布。仿真结果表明,该方法能在低信噪比条件下有效抑制等振幅mc-PPS的自交叉项和互交叉项的干扰,具有最佳的时频聚集性,克服了全局搜索基函数计算量大的问题,适用于非平稳信号的分析和处理。
  • 张贤达. 非平稳信号分析与处理[M]. 北京: 国防工业出版社, 2001: 451-492.
    ZHANG Xianda. Nonstationary Signal Analysis and Processing[M]. Beijing: National Defence Industry Press, 2001: 451-492.
    邹红星, 周小波, 李衍达. 时频分析: 回溯与前瞻[J]. 电子学报, 2000, 28(8): 78-84.
    ZOU Hongxing, ZHOU Xiaobo, and LI Yanda. Which time- frequency analysisa survey[J]. Acta Electronica Sinica, 2000, 28(8): 78-84.
    KRISTIAN T and MARC M. Adaptive time-frequency analysis for noise reduction in an audio filter bank with low delay[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2016, 24(4): 784-795. doi: 10.1109/ TASLP.2016.2526779.
    MISHRA A, SINGH A K, and SAHU S. ECG signal denoising using time-frequency based filtering approach[C]. Proceedings of the International Conference on Communication and Signal Processing, India, 2016: 0503-0507. doi: 10.1109/ICCSP.2016.7754188.
    WANG J and HE Q. Wavelet packet envelope manifold for fault diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(11): 2515-2526. doi: 10.1109/TIM.2016.2566838.
    刘颖, 陈殿仁, 陈磊, 等. 基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法[J]. 电子与信息学报, 2015, 37(5): 1135-1140. doi: 10.11999/JEIT140876.
    LIU Ying, CHEN Dianren, CHEN Lei, et al. Parameters estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics Information Technology, 2015, 37(5): 1135-1140. doi: 10.11999/JEIT 140876.
    王忠仁, 林君, 李文伟. 基于Wigner-Ville分布的复杂时变信号的时频分析[J]. 电子学报, 2005, 33(12): 2239-2241.
    WANG Zhongren, LIN Jun, and LI Wenwei. Time-frequency analysis for complex time-varying signals based on Wigner- Ville distribution[J]. Acta Electronica Sinica, 2005, 33(12): 2239-2241.
    王勇, 姜义成. 多项式Wigner-Ville分布的频域卷积实现[J]. 电子与信息学报, 2008, 30(2): 286-289.
    WANG Yong and JIANG Yicheng. Realization of polynomial Wigner-Ville distribution based on the convolution in frequency domain[J]. Journal of Electronics Information Technology, 2008, 30(2): 286-289.
    PENG H W, CHANG H T, and LIN C C. 2-D linear frequency modulation signal separation using fractional Fourier transform[C]. Proceedings of the International Symposium on Computer, Consumer and Control, Taibei, China, 2016: 755-758. doi: 10.1109/IS3C.2016.193.
    CANDS E J, CHARLTON P, and HELGASON H. Detecting highly oscillatory signals by chirplet path pursuit[J]. Applied and Computational Harmonic Analysis, 2008, 24(1): 14-40.
    罗洁思, 于德介, 彭富强. 基于多尺度线调频基信号稀疏分解的多分量LFM信号检测[J]. 电子与信息学报, 2009, 31(11) 2781-2785.
    LUO Jiesi, YU Dejie, and PENG Fuqiang. Multicomponent LFM signals detection based on multi-scale Chirplet sparse signal decomposition[J]. Journal of Electronics Information Technology, 2009, 31(11): 2781-2785.
    梅检民, 肖云魁, 周斌, 等. 基于FRFT的改进多尺度线调频基稀疏信号分解方法[J]. 振动工程学报, 2013, 26(1): 135-142.
    MEI Jianmin, XIAO Yunkui, ZHOU Bin, et al. Improved multi-scale chirplet sparse signal decomposition method based on fractional Fourier transform[J]. Journal of Vibration Engineering, 2013, 26(1): 135-142.
    刘渝. 快速解线性调频信号估计[J]. 数据采集与处理, 1999, 14(2): 175-178.
    LIU Yu. Fast dechirp algorithm[J]. Journal of Data Acquisition Processing, 1999, 14(2): 175-178.
  • 加载中
计量
  • 文章访问数:  1392
  • HTML全文浏览量:  133
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2017-03-30
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回