高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流行度演化分析与预测综述

胡颖 胡长军 傅树深 黄建一

胡颖, 胡长军, 傅树深, 黄建一. 流行度演化分析与预测综述[J]. 电子与信息学报, 2017, 39(4): 805-816. doi: 10.11999/JEIT160743
引用本文: 胡颖, 胡长军, 傅树深, 黄建一. 流行度演化分析与预测综述[J]. 电子与信息学报, 2017, 39(4): 805-816. doi: 10.11999/JEIT160743
HU Ying, HU Changjun, FU Shushen, HUANG Jianyi. Survey on Popularity Evolution Analysis and Prediction[J]. Journal of Electronics & Information Technology, 2017, 39(4): 805-816. doi: 10.11999/JEIT160743
Citation: HU Ying, HU Changjun, FU Shushen, HUANG Jianyi. Survey on Popularity Evolution Analysis and Prediction[J]. Journal of Electronics & Information Technology, 2017, 39(4): 805-816. doi: 10.11999/JEIT160743

流行度演化分析与预测综述

doi: 10.11999/JEIT160743
基金项目: 

国家973规划项目(2013CB329601)

Survey on Popularity Evolution Analysis and Prediction

Funds: 

The National 973 Program of China (2013CB329601)

  • 摘要: 社交网络每天以爆发式的增长速率产生着大量信息,但是人们对海量信息的关注程度有限。人们关注哪些信息、对信息的关注程度如何随时间变化,即为信息的流行度演化问题。流行度演化反映了人们的关注点和信息的流动与传播。建模与预测网络信息的流行度演化有助于信息传播和人类行为的研究、辅助舆情监控、并带来极大的应用和商业价值。近几年,研究人员在该方面取得了丰硕的研究成果,但尚缺乏对这些成果进行梳理、总结的综述。该文系统地回顾网络信息流行度演化的主要工作,对分析与预测方法、模型、发展脉络进行梳理。首先从定性和定量方面阐述了流行度演化的特点;介绍如何量化影响流行度演化的众多因素,并对它们进行分类、总结;然后将已有的建模和预测方法归纳为3类:基于早期流行度、基于影响因素、基于级联传播,从原理、典型成果、特点比较、适用范围等方面对这3类方法进行评述;最后根据目前模型和方法的特点以及现实需求,指出了未来流行度演化的研究方向。
  • WU F and HUBERMAN B A. Popularity, novelty and attention[C]. Proceedings of the 9th ACM Conference on Electronic Commerce, Chicago, 2008: 240-245. doi: 10.1145/ 1386790.1386828.
    WU F and HUBERMAN B A. Novelty and collective attention[J]. Proceedings of the National Academy of Sciences, 2007, 104(45): 17599-17601. doi: 10.1073/pnas.0704916104.
    HONG L, DAN O, and Davison B D. Predicting popular messages in twitter[C]. Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, 2011: 57-58. doi: 10.1145/1963192.1963222.
    YANG J and LESKOVEC J. Patterns of temporal variation in online media[C]. Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, 2011: 177-186. doi: 10.1145/1935826.1935863.
    吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735-751.
    WU Xindong, LI Yi, and LI Lei. Influence analysis of online social networks[J]. Chinese Journal of Computers, 2014, 37(4): 735-751.
    KEMPE D, KLEINBERG J, and TARDOS. Maximizing the spread of influence through a social network[C]. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003: 137-146. doi: 10.1145/956750.956769.
    LERMAN K. Social information processing in news aggregation[J]. IEEE Internet Computing, 2007, 11(6): 16-28. doi 10.1109/mic.2007.136.
    BORGHOL Y, ARDON S, CARLSSON N, et al. The untold story of the clones: content-agnostic factors that impact YouTube video popularity[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, 2012: 1186-1194. doi 10.1145/ 2339530.2339717.
    KONG S, MEI Q, FENG L, et al. Predicting bursts and popularity of hashtags in real-time[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 927-930. doi: 10.1145/2600428.2609476.
    HE X, GAO M, KAN M Y, et al. Predicting the popularity of Web 2.0 items based on user comments[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 233-242. doi 10.1145/2600428.2609558.
    SZABO G and HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. doi: 10.1145/1787234.1787254.
    AGARWAL N, LIU H, TANG L, et al. Identifying the influential bloggers in a community[C]. Proceedings of the 2008 International Conference on Web Search and Data Mining, Palo Alto, 2008: 207-218. doi: 10.1145/1341531. 1341559.
    BANDARI R, ASUR S, and HUBERMAN B A. The pulse of news in social media: Forecasting popularity[C]. Proceedings of the 6th International AAAI Conference on Web and Social Media, Dublin, 2012: 26-33.
    CHATZOPOULOU G, SHENG C, and FALOUTSOS M. A first step towards understanding popularity in YouTube[C]. INFOCOM IEEE Conference on Computer Communications Workshops, San Diego, 2010: 1-6. doi 10.1109/infcomw. 2010.5466701.
    ROY S D, MEI T, ZENG W, et al. Towards cross-domain learning for social video popularity prediction[J]. IEEE Transactions on Multimedia, 2013, 15(6): 1255-1267. doi 10.1109/tmm.2013.2265079.
    JAMALI S and RANGWALA H. Digging Digg: Comment mining, popularity prediction, and social network analysis[C]. IEEE International Conference on Web Information Systems and Mining, Shanghai, 2009: 32-38. doi 10.1109/wism. 2009.15.
    YIN P, LUO P, WANG M, et al. A straw shows which way the wind blows: ranking potentially popular items from early votes[C]. Proceedings of the 5th ACM International Conference on Web Search and Data Mining, Seattle, 2012: 623-632. doi: 10.1145/2124295.2124370.
    CHA M, KWAK H, RODRIGUEZ P, et al. I tube, you tube, everybody tubes: Analyzing the world,s largest user generated content video system[C]. Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, New York, 2007: 1-14. doi: 10.1145/1298306.1298309.
    CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences, 2008, 105(41): 15649-15653. doi: 10.1073/pnas.0803685105.
    CRANE R and SORNETTE D. Viral, quality, junk videos on YouTube: Separating content from noise in an information- rich environment[C]. AAAI Spring Symposium 2008: Social Information Processing, Stanford, 2008: 18-20.
    FIGUEIREDO F. On the prediction of popularity of trends and hits for user generated videos[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 741-746. doi: 10.1145/2433396. 2433489.
    ASUR S, HUBERMAN B A, SZABO G, et al. Trends in social media: Persistence and decay[OL]. Available at SSRN 1755748, 2011. doi: 10.2139/ssrn.1755748.
    FIGUEIREDO F, BENEVENUTO F, and ALMEIDA J M. The tube over time: Characterizing popularity growth of YouTube videos[C]. Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, 2011: 745-754. doi: 10.1145/1935826.1935925.
    CHENG J, ADAMIC L A, KLEINBERG J M, et al. Do cascades recur?[C]. Proceedings of the 25th International Conference on World Wide Web. Montreal, 2016: 671-681. doi: 10.1145/2872427.2882993.
    MATSUBARA Y, SAKURAI Y, PRAKASH B A, et al. Rise and fall patterns of information diffusion: Model and implications[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, 2012: 6-14. doi: 10.1145/2339530.2339537.
    YU H, XIE L, and SANNER S. The lifecycle of a YouTube video: Phases, content and popularity[C]. 9th International AAAI Conference on Web and Social Media, Oxford, 2015.
    SALGANIK M J, DODDS P S, and WATTS D J. Experimental study of inequality and unpredictability in an artificial cultural market[J]. Science, 2006, 311(5762): 854-856. doi: 10.1126/science.1121066.
    LERMAN K and GALSTYAN A. Analysis of social voting patterns on digg[C]. Proceedings of the First Workshop on Online Social Networks, Seattle, 2008: 7-12. doi: 10.1145/ 1397735.1397738.
    CHANG B, ZHU H, GE Y, et al. Predicting the popularity of online serials with autoregressive models[C]. Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, Shanghai, 2014: 1339-1348. doi: 10.1145/2661829.2662055.
    PINTO H, ALMEIDA J M, and GONCALVES M A. Using early view patterns to predict the popularity of YouTube videos[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 365-374. doi: 10.1145/2433396.2433443.
    TAN Z, WANG Y, ZHANG Y, et al. A novel time series approach for predicting the long-term popularity of online videos[J]. IEEE Transactions on Broadcasting, 2016, 62(2): 436-445. doi: 10.1109/TBC.2016.2540522.
    WU J, ZHOU Y, CHIU D M, et al. Modeling dynamics of online video popularity[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1882-1895. doi: 10.1109/TMM.2016.2579600.
    LI H, MA X, WANG F, et al. On popularity prediction of videos shared in online social networks[C]. Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, 2013: 169-178. doi: 10.1145/2505515.2505523.
    TATAR A, LEGUAY J, ANTONIADIS P, et al. Predicting the popularity of online articles based on user comments[C]. Proceedings of the International Conference on Web Intelligence, Mining and Semantics, Sogndal, 2011: 1-8. doi: 10.1145/1988688.1988766.
    SIERSDORFER S, CHELARU S, NEJDL W, et al. How useful are your comments?: Analyzing and predicting YouTube comments and comment ratings[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, 2010: 891-900. doi: 10.1145/1772690.1772781.
    HE X, GAO M, KAN M Y, et al. Predicting the popularity of web 2.0 items based on user comments[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 233-242. doi: 10.1145/2600428.2609558.
    MA Z, SUN A, and CONG G. On predicting the popularity of newly emerging hashtags in twitter[J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410. doi: 10.1002/asi.22844.
    KHOSLA A, DAS SARMA A, and HAMID R. What makes an image popular?[C]. Proceedings of the 23rd International Conference on World Wide Web, Seoul, 2014: 867-876. doi 10.1145/2566486.2567996.
    BAO P, SHEN H W, HUANG J, et al. Popularity prediction in microblogging network: A case study on sina weibo[C]. Proceedings of the 22nd International Conference on World Wide Web Companion, Rio de Janeiro, 2013: 177-178. doi 10.1145/2487788.2487877.
    LERMAN K and HOGG T. Using a model of social dynamics to predict popularity of news[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, 2010: 621-630. doi: 10.1145/1772690.1772754.
    ZHAO Q, ERDOGDU MA, HE HY, et al. SEISMIC: A self-exciting point process model for predicting tweet popularity[C]. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 2015: 1513-1522. doi: 10.1145/2783258. 2783401.
    LEE J G, MOON S, and SALAMATIAN K. An approach to model and predict the popularity of online contents with explanatory factors[C]. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, London, 2010, 1: 623-630. doi: 10.1109/WI-IAT.2010.209.
    AHMED M, SPAGNA S, HUICI F, et al. A peek into the future predicting the evolution of popularity in user generated content[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 607-616. doi: 10.1145/2433396.2433473.
    FIGUEIREDO F, ALMEIDA J M, GONCALVES M A, et al. TrendLearner: Early prediction of popularity trends of user generated content[J]. Information Sciences, 2016: 349-350, 172-187. doi: 10.1016/j.ins.2016.02.025.
    GRUHL D, GUHA R, LIBEN-NOWELL D, et al. Information diffusion through blogspace[C]. Proceedings of the 13th International Conference on World Wide Web, New York, 2004: 491-501. doi: 10.1145/988672.988739.
    YANG J and LESKOVEC J. Modeling information diffusion in implicit networks[C]. IEEE 10th International Conference on Data Mining, Sydney, 2010: 599-608. doi: 10.1109/icdm. 2010.22.
    ZHAO J, WU J, FENG X, et al. Information propagation in online social networks: A tie-strength perspective[J]. Knowledge and Information Systems, 2012, 32(3): 589-608. doi: 10.1007/s10115-011-0445-x.
    CHENG J, ADAMIC L, DOW P, et al. Can cascades be predicted?[C]. Proceedings of the 23rd International Conference on World Wide Web, Seoul, 2014: 925-936. doi: 10.1145/2566486.2567997.
    KUPAVSKII A, OSTROUMOVA L, UMNOV A, et al. Prediction of retweet cascade size over time[C]. Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Sheraton, 2012: 2335-2338. doi: 10.1145/2396761.2398634.
    ARDON S, BAGCHI A, MAHANTI A, et al. Spatio- temporal and events based analysis of topic popularity in twitter[C]. Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, 2013: 219-228. doi: 10.1145/2505515.2505525.
    WANG S, YAN Z, HU X, et al. Burst time prediction in cascades[C]. 29th AAAI Conference on Artificial Intelligence, Austin, 2015: 325-331.
  • 加载中
计量
  • 文章访问数:  1290
  • HTML全文浏览量:  201
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-12-30
  • 刊出日期:  2017-04-19

目录

    /

    返回文章
    返回