高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于匹配域裁剪的包分类规则集压缩方法

孙鹏浩 兰巨龙 陆肖元 胡宇翔 马腾

孙鹏浩, 兰巨龙, 陆肖元, 胡宇翔, 马腾. 一种基于匹配域裁剪的包分类规则集压缩方法[J]. 电子与信息学报, 2017, 39(5): 1185-1192. doi: 10.11999/JEIT160740
引用本文: 孙鹏浩, 兰巨龙, 陆肖元, 胡宇翔, 马腾. 一种基于匹配域裁剪的包分类规则集压缩方法[J]. 电子与信息学报, 2017, 39(5): 1185-1192. doi: 10.11999/JEIT160740
SUN Penghao, LAN Julong, LU Xiaoyuan, HU Yuxiang, MA Teng. Field-trimming Compression Model for Rule Set of Packet Classification[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1185-1192. doi: 10.11999/JEIT160740
Citation: SUN Penghao, LAN Julong, LU Xiaoyuan, HU Yuxiang, MA Teng. Field-trimming Compression Model for Rule Set of Packet Classification[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1185-1192. doi: 10.11999/JEIT160740

一种基于匹配域裁剪的包分类规则集压缩方法

doi: 10.11999/JEIT160740
基金项目: 

国家973计划项目(2012CB315901),国家自然科学基金(61521003),国家863计划项目(2013AA013505)

Field-trimming Compression Model for Rule Set of Packet Classification

Funds: 

The National 973 Program of China (2012CB315901), The National Natural Science Foundation of China (61521003), The National 863 Program of China (2013AA013505)

  • 摘要: 随着以OpenFlow为代表的多匹配域包分类规则的出现,匹配域数量的不断增加、流表宽度的不断增大以及流表规模的不断膨胀,大大增加了硬件存储的压力。为提高现有三态内容可寻此存储器(TCAM)资源利用率,该文提出一种基于规则集特征分析的匹配域裁剪模型Field Trimmer。一方面基于对规则集中匹配域的逻辑关系分析,实现匹配域的合并, 从而减少匹配域的数量;另一方面基于对规则集统计规律的分析,实现匹配域的裁剪,使用部分匹配域来达到整体的匹配效果。实验结果表明,相比于其他方案,该方案在较小的时间复杂度下,能够进一步节省OpenFlow流表的TCAM存储空间需求50%左右;对于常见的包分类规则集,该方案所需的储存空间能够节省40%以上。
  • MCKEOWN N. Software-defined networking[C]. INFOCOM Keynote Talk, Rio de Janero, Brazil, 2009: 30-32.
    MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow: Enabling innovation in campus networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74. doi: 10.1145/1355734.1355746.
    LAKSHMINARAYANAN K, RANGARAJAN A, and VENKATACHARY S. Algorithms for advanced packet classification with ternary CAMs[J]. ACM SIGCOMM Computer Communication Review, 2005, 35(4): 193-204. doi: 10.1145/1090191.1080115.
    VAMANAN B, VOSKUILEN G, and VIJAYKUMAR T N. EffiCuts: Optimizing packet classification for memory and throughput[J]. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 207-218. doi: 10.1145/1851182.1851208.
    SONG H and TURNER J S. ABC: Adaptive binary cuttings for multidimensional packet classification[J]. IEEE/ACM Transactions on Networking, 2013, 21(1): 98-109. doi: 10. 1109/TNET.2012.2190519.
    陈正虎, 兰巨龙, 黄万伟, 等. 一种基于Bloom-filter表项压缩的TCAM业务识别算法[J]. 电子与信息学报, 2011, 33(9): 2212-2218. doi: 10.3724/SP.J.1146.2011.00058.
    CHEN Zhenghu, LAN Julong, HUANG Wanwei, et al. A TCAM service identification algorithm based on access compression using bloom-filter[J]. Journal of Electronics Information Technology, 2011, 33(9): 2212-2218. doi: 10. 3724/SP.J.1146.2011.00058.
    BREMLER-BARR A and HENDLER D. Space-efficient TCAM-based classification using Gray coding[J]. IEEE Transactions on Computers, 2012, 61(1): 18-30. doi: 10.1109/ TC.2010.267.
    BREMLER-BARR A, HAY D, and HENDLER D. Layered interval codes for TCAM-based classification[C]. INFOCOM 2009, Rio de Janero, Brazil, 2009: 1305-1313. doi: 10.1109/ INFCOM.2009.5062045.
    MEINERS C R, LIU A X, and TORNG E. Bit weaving: A non-prefix approach to compressing packet classifiers in TCAMs[J]. IEEE/ACM Transactions on Networking, 2012, 20(2): 93-102. doi: 10.1109/TNET.2011.2165323.
    WEI Rihua, XU Yang, and CHAO H J. Finding nonequivalent classifiers in Boolean space to reduce TCAM usage[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 968-981. doi: 10.1109/TNET.2015.2402093.
    MISHRA T, SAHNI S, and SEETHARAMAN G. PC-DUOS: Fast TCAM lookup and update for packet classifiers[C]. IEEE Symposium on Computers and Communications, Kerkyra, Corfu, Greece, 2011: 265-270. doi: 10.1109/ ISCC.2011.5983851.
    BANERJEE T, SAHNI S, and SEETHARAMAN G. PC- DUOS+: A TCAM architecture for packet classifiers[J]. IEEE Transactions on Computers, 2014, 63(6): 1527-1540. doi: 10.1109/TC.2012.287.
    BANERJEE T, SAHNI S, and SEETHARAMAN G. PC-TRIO: A power efficient TCAM architecture for packet classifiers[J]. IEEE Transactions on Computers, 2015, 64(4): 1104-1118. doi: 10.1109/TC.2014.2315645.
    CHANG D Y and WANG P C. TCAM-based multi-match packet classification using multidimensional rule layering[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 1125-1138. doi: 10.1109/TNET.2015.2411274.
    SCHRIFF L, AFEK Y, and BREMLER-BARR A. Orange: Multi field OpenFlow based range classifier[C]. ACM/IEEE Symposium on Architectures for Networking Communications Systems, Oakland, CA, USA, 2015: 63-73. doi: 10.1109/ANCS.2015.7110121.
    KOGAN K, NIKOLENKO S I, ROTTENSTREICH O, et al. Exploiting order independence for scalable and expressive packet classification[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 1251-1264. doi: 10.1109/TNET. 2015.2407831.
    LIU Z, WANG X, YANG B, et al. BitCuts: Towards fast packet classification for order-independent rules[J]. ACM SIGCOMM Computer Communication Review, 2015, 45(4): 339-340. doi: 10.1145/2785956. 2789998.
    GE J, CHEN Z, WU Y, et al. H-SOFT: A heuristic storage space optimisation algorithm for flow table of OpenFlow[J]. Concurrency Computation Practice Experience, 2014, 27(13): 3497-3509. doi: 10.1002/cpe.3206.
    YUN R Q and VIKTOR K P. High-performance and dynamically updatable packet classification engine on FPGA[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(1): 197-209. doi: 10.1109/TPDS.2015. 2389239.
    TAYLOR D E and TURNER J S. ClassBench: A packet classification benchmark[J]. IEEE/ACM Transactions on Networking, 2005, 3(3): 499-511. doi: 10.1109/TNET.2007. 893156.
  • 加载中
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  128
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-11
  • 修回日期:  2017-02-08
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回