高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最小二乘的短垂线阵匹配场处理

王奇 陈航 王英民 苟艳妮

王奇, 陈航, 王英民, 苟艳妮. 基于最小二乘的短垂线阵匹配场处理[J]. 电子与信息学报, 2017, 39(6): 1355-1362. doi: 10.11999/JEIT160727
引用本文: 王奇, 陈航, 王英民, 苟艳妮. 基于最小二乘的短垂线阵匹配场处理[J]. 电子与信息学报, 2017, 39(6): 1355-1362. doi: 10.11999/JEIT160727
WANG Qi, CHEN Hang, WANG Yingmin, GOU Yanni. Matched Field Processing Based on the Least SquaresAlgorithm for Short Vertical Linear Array[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1355-1362. doi: 10.11999/JEIT160727
Citation: WANG Qi, CHEN Hang, WANG Yingmin, GOU Yanni. Matched Field Processing Based on the Least SquaresAlgorithm for Short Vertical Linear Array[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1355-1362. doi: 10.11999/JEIT160727

基于最小二乘的短垂线阵匹配场处理

doi: 10.11999/JEIT160727

Matched Field Processing Based on the Least SquaresAlgorithm for Short Vertical Linear Array

  • 摘要: 匹配场处理通常要求接收基阵能够覆盖整个水层,如此大尺度的布阵方式严重阻碍了该方法的广泛使用。为了缓解匹配场处理对阵形的苛刻要求,该文提出一种基于最小二乘的短垂线阵匹配场处理技术。该方法把接收阵的声场分解为模态函数矩阵和模态系数向量,并在最小范数意义下用最小二乘算法得到了各阶模态系数的估计值,在此基础上重新构造了短垂线阵的测量场向量,使得重构后的测量场包含更多的环境信息,从而提高了短垂线阵匹配场处理的性能。最后,在典型的Pekeris波导环境中进行仿真,以3种布放在水面附近的短垂线阵为例,分析了匹配场被动定位的性能,并用广义余弦量化分析了不同布阵方式对测量场的影响。结果表明:使用最小二乘算法对短阵的测量场进行声场重构后广义余弦变大,此时短垂线阵匹配场处理的定位性能得到改善,验证了该算法的有效性。
  • BAGGEROER A B, KUPERMAN W A, and MLKHALEVSKY P N. An overview of matched field methods in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 1993, 18(4): 401-424. doi: 10.1109/48.262292.
    KUPERMAN W A. An overview of beamforming, matched-field processing, and time reversal techniques[J]. The Journal of the Acoustical Society of America, 2016, 139(4): 2081. doi: 10.1121/1.4950176.
    DONG H, BADIEY M, and ChAPMAN R. Matched mode geoacoustic inversion of broadband signals in shallow water [J]. The Journal of the Acoustical Society of America, 2015, 137(4): 2390. doi: 10.1121/1.4920698.
    罗新禹, 李建, 周德富, 等. 失配情况下匹配模处理方法研究 [J]. 应用声学, 2016, 35(2): 172-178. doi: 10.11684/j.issn. 1000-310X.2016.02.012.
    LUO Xinyu, LI Jian, ZHOU Defu, et al. Simulation studies of the matched-mode processing for locating underwater sound sources[J]. Journal of Applied Acoustics, 2016, 35(2): 172-178. doi: 10.11684/j.issn.1000- 310X.2016.02.012.
    HARRISON B F, VACCARO R J, and TUFTS D W. Robust broadband matched-field localization: Results for a short, sparse vertical array [J]. The Journal of the Acoustical Society of America, 1999, 106(1): 515-517. doi: 10.1121/1.427072.
    GEMBA K L, HODGKISS W S, and GERSTOFT P. Single and multiple snapshot compressive matched field processing [J]. The Journal of the Acoustical Society of America, 2015, 138(3): 1928. doi: 10.1121/1.4934072.
    彭水, 袁蓉, 徐国贵. 浅海水平固定阵阵形对匹配场定位性能的影响[J]. 舰船科学技术, 2015, 37(9): 121-126. doi: 10.3404/j.issn.1672-7649.2015.09.024.
    PENG Shui, YUAN Rong, and XU Guogui. Localization performance of different horizontal hydrophone array shape for matched field processing in shallow sea[J]. Ship Science and Technology, 2015, 37(9): 121-126. doi: 10.3404/j.issn. 1672-7649.2015.09.024.
    TABRIKIAN J, KROLIK J L, and MESSER H. Robust maximum-likelihood source localization in an uncertain shallow-water waveguide[J]. The Journal of the Acoustical Society of America, 1997, 101(1): 241-249.
    MICHALOPOULOU Z H and PORTER M B. Matched-field processing for broad-band source localization[J]. IEEE Journal of Oceanic Engineering, 1996, 21(4): 384-392. doi: 10.1109/48. 544049.
    ORRIS G J, NICHOLAS M, and PERKINS J S. The matched-phase coherent multi-frequency matched-field processor[J]. The Journal of the Acoustical Society of America, 2000, 107(5): 2563-2575. doi: 10.1121/1.428644.
    WILSON G R, KOCH R A, and VIDMAR P J. Matched mode localization[J]. The Journal of the Acoustical Society of America, 1988, 84(1): 310-320. doi: 10.1121/1.396987.
    YANG T C. A method of range and depth estimation by modal decomposition[J]. The Journal of the Acoustical Society of America, 1987, 82(5): 1736-1745. doi: 10.1121/ 1.395825.
    TOLLEFSEN D and DOSSO S E. Matched-field source localization with multiple small-aperture arrays[J]. The Journal of the Acoustical Society of America, 2015, 138(3): 1754-1754. doi: 10.1121/1.4933543.
    Porter M B and Tolstoy A. The matched field processing benchmark problems [J]. Journal of Computational Acoustics, 1994, 2(3): 161-185. doi: 10.1142/S0218396X94000129.
    YANG T C. Data-based matched-mode source localization for a moving source[J]. The Journal of the Acoustical Society of America, 2014, 135(3): 1218-1230. doi: 10.1121/1.4863270.
    赵拥军, 赵勇胜, 赵闯. 基于正则化约束总体最小二乘的单站DOA-TDOA无源定位算法[J]. 电子与信息学报, 2016, 38(9): 2336-2343. doi: 10.11999/JEIT151379.
    ZHAO Yongjun, ZHAO Yongsheng, and ZHAO Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics Information Technology, 2016, 38(9): 2336-2343. doi: 10.11999/JEIT151379.
    WU H, CHEN S, ZHANG Y, et al. Robust structured total least squares algorithm for passive location[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 946-953. doi: 10.1109/JSEE.2015.00103.
    GOLUB G H and VAN LOAN C F. An analysis of the total least squares problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893. doi: 10.1137/0717073.
    王奇, 王英民, 苟艳妮. 稳健的条件概率约束匹配场处理[J]. 电子与信息学报, 2014, 36(10): 2425-2430. doi: 10.3724/SP.J. 1146.2014.00027.
    WANG Qi, WANG Yingmin, and GOU Yanni. Robust conditional probability constraint matched field processing[J]. Journal of Electronics Information Technology, 2014, 36(10): 2425-2430. doi: 10.3724/SP.J.1146.2014.00027.
  • 加载中
计量
  • 文章访问数:  1048
  • HTML全文浏览量:  82
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-11-17
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回