高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于瞬态电磁响应的埋地细长良导体目标长度和方位估计

周丽军 欧阳缮 廖桂生 晋良念

周丽军, 欧阳缮, 廖桂生, 晋良念. 基于瞬态电磁响应的埋地细长良导体目标长度和方位估计[J]. 电子与信息学报, 2017, 39(6): 1424-1431. doi: 10.11999/JEIT160718
引用本文: 周丽军, 欧阳缮, 廖桂生, 晋良念. 基于瞬态电磁响应的埋地细长良导体目标长度和方位估计[J]. 电子与信息学报, 2017, 39(6): 1424-1431. doi: 10.11999/JEIT160718
ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Estimation of Length and Orientation of Subsurface Thin-wire Structures Based on Transient Electromagnetic Responses[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1424-1431. doi: 10.11999/JEIT160718
Citation: ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Estimation of Length and Orientation of Subsurface Thin-wire Structures Based on Transient Electromagnetic Responses[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1424-1431. doi: 10.11999/JEIT160718

基于瞬态电磁响应的埋地细长良导体目标长度和方位估计

doi: 10.11999/JEIT160718
基金项目: 

国家自然科学基金(61371186, 61162007),广西自然科学基金(2013GXNSFFA019004)

Estimation of Length and Orientation of Subsurface Thin-wire Structures Based on Transient Electromagnetic Responses

Funds: 

The National Natural Science Foundation of China (61371186, 61162007), Guangxi Natural Science Foundation (2013GXNSFFA019004)

  • 摘要: 对地下管道电缆等目标的几何特征估计在城市建设和市政基础设施维护中尤为重要,针对此类埋地细长良导体目标,该文提出一种基于瞬态电磁响应的管道目标长度与方位角估计方法。建立了介电媒质中水平极化电磁波在布鲁斯特角入射下细长良导体目标后向散射回波时延差模型,通过分析瞬态响应时频分布,建立了其谐振态与目标长度的关系,并由此估计目标的长度。利用瞬态响应早时部分首达回波与晚时部分谐振回波的能量变化趋势,判断电磁波到达目标两端点的时间顺序,再根据首达时间延迟差估计目标的方位角。数值仿真结果表明在电场方向与目标轴线方向偏离不大的情况下,提出方法有效并且对噪声具有鲁棒性,适用于信噪比SNR5 dB的长度估计以及SNR10 dB的方位角估计。
  • DINGES M, AUSTIN R, and HAVEN J. Non-invasive Non-destructive Assessment of Underground Pipe[M]. Colorado: Amer Water Works Assn, 2002: 1-8.
    JOSHI N. Prestressed Concrete Pipes and Pipelines[M]. Oxford: Alpha Science International Ltd., 2012: 1-10.
    王强, 苗金明. 地下管网检测技术[M]. 北京: 机械工业出版社, 2014: 1-6.
    WANG Qiang and MIAO Jinming. Underground Pipe Network Detection Technology[M]. Beijing: Machinery Industry Press, 2014: 1-6.
    YANG Hongwei, YANG Zekun, and PEI Yukun. Ground- penetrating radar for soil and underground pipelines using the forward modeling simulation method[J]. Optik, 2014, 125(23): 7075-7079. doi: 10.1016/j.ijleo.2014.08.099.
    曾昭发, 刘四新, 王者江, 等. 探地雷达方法原理及应用[M]. 北京: 科学出版社, 2006: 71.
    ZENG Zhaofa, LIU Sixin, WANG Zhejiang, et al. Principle and Application of Ground Penetrating Radar[M]. Beijing: Science Press, 2006: 71.
    SNICKER E, MIKHNEV V, and OLKKONEN M. Discrimination of buried objects in impulse GPR using phase retrieval technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1001-1007. doi: 10.1109/TGRS. 2014.2331427.
    TSOFLIAS G, PERLL C, BAKER M, et al. Cross-polarized GPR imaging of fracture flow channeling[J]. Journal of Earth Science, 2015, 26(6): 776-784. doi: 10.1007/s12583-015-0612- 1.
    LIU Hai, ZHAO Jianguo, and SATO M. A hybrid dual- polarization GPR system for detection of linear objects[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 317-320. doi: 10.1109/LAWP.2014.2363826.
    CHEN K, NYQUIST D, ROTHWELL E, et al. Radar target discrimination by convolution of radar return with extinction pulse and single mode extraction signals[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(7): 896-904. doi: 10.1109/TAP.1986.1143908.
    LI Fenghua, LIU Qinghuo, and SONG Linping. Three-dimensional reconstruction of objects buried in layered media[C]. IEEE Antennas and Propagation Society International Symposium, California, USA, 2004: 193-196. doi: 10.1109/APS.2004.1329592.
    DANIELE V and LOMBARDI G. Arbitrarily oriented perfectly conducting wedge over a dielectric half-space: diffraction and total far field[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1416-1433. doi: 10.1109/TAP.2016.2524412.
    CHEN C. Electromagnetic resonances of immersed dielectric spheres[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(7): 1074-1083. doi: 10.1109/8.704811.
    LUI H, PERSSON M, and SHULEY N. Joint time-frequency analysis of transient electromagnetic scattering from a subsurface target[J]. IEEE Antennas and Propagation Magazine, 2012, 54(5): 109-130. doi: 10.1109/MAP.2012. 6348122.
    JANG S, CHOI W, SARKAR T, et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(11): 3109-3120. doi: 10.1109/TAP. 2004.835165.
    周智敏, 金添, 等. 超宽带地表穿透成像雷达[M]. 北京: 国防工业出版社, 2013: 154-180.
    ZHOU Zhimin, JIN Tian, et al. Ultrawideband Ground Penetrating Imaging Radar[M]. Beijing: National Defense Industry Press, 2013: 154-180.
    BOWMAN J, SENIOR T, and USLENGHI P. Electromagnetic and Acoustic Scattering by Simple Shapes [M]. New York, John Wiley Sons, INC. 1969: 92-127.
    ALBANI M, CARLUCCIO G, and PATHAK P. A uniform geometrical theory of diffraction for vertices formed by truncated curved wedges[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3136-3143. doi: 10.1109/TAP. 2015.2427877.
    PATHAK P, CARLUCCIO G, and ALBANI M. The uniform geometrical theory of diffraction and some of its applications [J]. IEEE Antennas and Propagation Magazine, 2013, 55(4): 41-69. doi: 10.1109/MAP.2013.6645140.
    XIAO Gaobiao, TIAN Xuezhe, LUO Wei, et al. Impulse responses and the late time stability properties of time-domain integral equations[J]. IET Microwaves, Antennas Propagation, 2015, 9(7): 603-610. doi: 10.1049/ iet-map.2014.0318.
    CHAD O, HARGRAVE I, VAUGHAN L, et al. Late-time estimation for resonance-based radar target identification[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5865-5871. doi: 10.1109/TAP.2014.2350507.
    SUN Meng, BASTARD C, PINEL N, et al. Road surface layers geometric parameters estimation by ground penetrating radar using estimation of signal parameters via rotational invariance techniques method[J]. IET Radar, Sonar Navigation, 2016, 10(3): 603-609. doi: 10.1049/iet- rsn.2015.0374.
    粟嘉, 陶海红, 饶烜, 等. 时频面滑窗掩膜的多分量信号高效重构算法[J]. 电子与信息学报, 2015, 37(4): 804-810. doi: 10.11999/JEIT140511.
    SU Jia, TAO Haihong, RAO Xuan, et al. An efficient multi- component signals reconstruction algorithm using masking technique based on sliding window in time-frequency plane[J]. Journal of Electronics Information Technology, 2015, 37(4): 804-810. doi: 10.11999/JEIT140511.
    HUSSEIN R, SHABAN K, and EL-HAG A. Wavelet transform with histogram based threshold estimation for online partial discharge signal denoising[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3601-3614. doi: 10.1109/TIM.2015.2454651.
  • 加载中
计量
  • 文章访问数:  1093
  • HTML全文浏览量:  140
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-07
  • 修回日期:  2016-12-15
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回