高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4-正则图着色的Kempe等价性

刘小青 许进

刘小青, 许进. 4-正则图着色的Kempe等价性[J]. 电子与信息学报, 2017, 39(5): 1233-1244. doi: 10.11999/JEIT160716
引用本文: 刘小青, 许进. 4-正则图着色的Kempe等价性[J]. 电子与信息学报, 2017, 39(5): 1233-1244. doi: 10.11999/JEIT160716
LIU Xiaoqing, XU Jin. Kempe Equivalence of Colorings of 4-regular Graphs[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1233-1244. doi: 10.11999/JEIT160716
Citation: LIU Xiaoqing, XU Jin. Kempe Equivalence of Colorings of 4-regular Graphs[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1233-1244. doi: 10.11999/JEIT160716

4-正则图着色的Kempe等价性

doi: 10.11999/JEIT160716
基金项目: 

国家973计划项目(2013CB329600),国家自然科学基金(61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

Kempe Equivalence of Colorings of 4-regular Graphs

Funds: 

The National 973 Program of China (2013CB 329600), The National Natural Science Foundation of China (61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

  • 摘要: 给定一个图G及它的一个正常顶点着色f, G中任意两种颜色的顶点导出子图称为G的一个2-色导出子图,该2-色导出子图的分支称为G的一个2-色分支。Kempe变换是指将图G的某个2-色分支实施颜色互换。若两个着色之间可通过若干次Kempe变换达到对方,则这两个着色是Kempe等价的。Mohar猜想当k3时,对于任意的连通k-正则图G,若G不是完全图,则G的所有k-着色是Kempe等价的。Feghali等人解决了k=3时的情况,当k4时,此猜想尚未解决。该文研究了k=4时的情况,证明了:(1)若G是一个连通度小于3的4-正则图,则G的所有4-着色是Kempe等价的;(2)若G是4-正则图,且含有与4-轮或近5-阶完全图同构的子图,则G的所有4-着色是Kempe等价的;(3)若G是一个3-连通4-正则图,且G存在一个顶点x和一个4-着色f,满足x的邻域中有3个或4个顶点在f下着相同颜色,则G的所有4-着色是Kempe等价的。
  • KEMPE A B. On the geographical problem of the four colors[J]. American Journal of Mathematics, 1879, 2(3): 193-200. doi: 10.2307/2369235.
    MUHLENTHALER M and WANKA R. The connectedness of clash-free timetables[C]. 10th International Conference of the Practice and Theory of Automated Timetabling, York, United Kingdom, 2014: 26-29.
    WANG J S, SWENDSEN R H, and KOTECKY R. Antiferromagnetic potts models[J]. Physical Review Letters, 1989, 63(2): 109-112. doi: 10.1103/PhysRevLett.63.109.
    WANG J S, SWENDSEN R H, and KOTECKY R. Three- state antiferromagnetic potts models: A Monte Carlo study[J]. Physical Review B, 1990, 42(4): 2465-2474. doi: 10.1103/ PhysRevB.42.2465.
    VIGODA E. Improved bounds for sampling colorings[J]. Journal of Mathematical Physics, 2000, 41(3): 51-59. doi: 10.1063/1.533196.
    FISK S. Geometric coloring theory[J]. Advances in Mathematics, 1977, 24(3): 298-340. doi: 10.1016/0001-8708 (77)90061-5.
    MEYNIEL H. Les 5-colorations d'un graphe planaire forment une classe de commutation unique[J]. Journal of Combinatorial Theory Series B, 1978, 24(3): 251-257. doi: 10.1016/0095-8956(78)90042-4.
    MOHAR B. Kempe Equivalence of Colorings[M]. Graph Theory in Paris. Birkhuser Basel, 2006: 287-297. doi: 10.1007/978-3-7643-7400-6_22.
    VERGNAS M L and MEYNIEL H. Kempe classes and the Hadwiger conjecture[J]. Journal of Combinatorial Theory Series B, 1981, 31(1): 95-104. doi: 10.1016/S0095-8956(81) 80014-7.
    BERTSCHI M E. Perfectly contractile graphs[J]. Journal of Combinatorial Theory, Series B, 1990, 50(2): 222-230. doi: 10.1016/0095-8956(90)90077-D.
    MEYNIEL H. The graphs whose odd cycles have at least two chords[J]. Annals of Discrete Mathematics, 1984, 88(21): 115-119. doi: 10.1016/S0304-0208(08)72927-X.
    FEGHALI C, JOHNSON M, and PAULUSMA D. Kempe cquivalence of colourings of cubic graphs[J]. European Journal of Combinatorics, 2017, 59(2): 1-10. doi: 10.1016/ j.ejc.2016.06.008.
    MCDONALD J, MOHAR B, and SCHEIDE D. Kempe equivalence of edge-colorings in subcubic and subquartic graphs[J]. Journal of Graph Theory, 2012, 70(2): 226-239. doi: 10.1002/jgt.20613.
    BELCASTRO S M and HAAS R. Counting edge-Kempe- equivalence classes for 3-edge-colored cubic graphs[J]. Discrete Mathematics, 2014, 325(13): 77-84. doi: 10.1016/j. disc.2014.02.014.
    许进. 极大平面图的结构与着色理论(2)多米诺构形与扩缩运算[J]. 电子与信息学报, 2016, 38(6): 1271-1327. doi: 10.11999 /JEIT160224.
    XU J. Theory on structure and coloring of maximal planar graphs (2) Domino configurations and extending- ccontracting operations[J]. Journal of Electronics Information Technology, 2016, 38(6): 1271-1327. doi: 10. 11999/JEIT160224.
    许进. 极大平面图的结构与着色理论(4)-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557-1585. doi: 10. 11999/JEIT160483.
    XU J. Theory on structure and coloring of maximal planar graphs (4):-operations and Kempe equivalent classes[J]. Journal of Electronics Information Technology, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483.
  • 加载中
计量
  • 文章访问数:  1602
  • HTML全文浏览量:  208
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-07
  • 修回日期:  2017-02-22
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回