高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种空间相关性与隶属度平滑的FCM改进算法

肖满生 肖哲 文志诚 周立前

肖满生, 肖哲, 文志诚, 周立前. 一种空间相关性与隶属度平滑的FCM改进算法[J]. 电子与信息学报, 2017, 39(5): 1123-1129. doi: 10.11999/JEIT160710
引用本文: 肖满生, 肖哲, 文志诚, 周立前. 一种空间相关性与隶属度平滑的FCM改进算法[J]. 电子与信息学报, 2017, 39(5): 1123-1129. doi: 10.11999/JEIT160710
XIAO Mansheng, XIAO Zhe, WEN Zhicheng, ZHOU Liqian. Improved FCM Clustering Algorithm Based on Spatial Correlation and Membership Smoothing[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1123-1129. doi: 10.11999/JEIT160710
Citation: XIAO Mansheng, XIAO Zhe, WEN Zhicheng, ZHOU Liqian. Improved FCM Clustering Algorithm Based on Spatial Correlation and Membership Smoothing[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1123-1129. doi: 10.11999/JEIT160710

一种空间相关性与隶属度平滑的FCM改进算法

doi: 10.11999/JEIT160710
基金项目: 

湖南省自然科学基金(2015JJ2047, 2016JJ5034, 2016JJ5036),湖南省教育厅项目(15A055, 15C0403)

Improved FCM Clustering Algorithm Based on Spatial Correlation and Membership Smoothing

Funds: 

The Natural Science Foundation of Hunan Province (2015JJ2047, 2016JJ5034, 2016JJ5036), The Scientific Research Project of Hunan Provincial Department of Education (15A055, 15C0403)

  • 摘要: 针对传统的模糊C均值(Fuzzy C-Means, FCM)及其改进算法对样本进行聚类时存在对噪声敏感及边界样本聚类不够准确等问题,该文提出一种基于空间相关性模糊C均值聚类改进算法。首先分析样本的空间分布特征及相互影响,设计样本的影响值来改进聚类中心计算方法及距离计算函数,然后结合邻域信息,通过在邻域内样本隶属度求和过程中引入一控制参数来重新定义模糊隶属度矩阵,从而实现邻域样本的隶属平滑。理论分析和实验表明,改进算法对含有大量噪声的样本及图像中各区域边界值的处理有较好的效果。
  • HE L H, WEN Y, WAN M, et al. Multi-channel features based automated segmentation of diffusion tensor imaging using an improved FCM with spatial constraints[J]. Neurocomputing, 2014, 137: 107-114. doi: 10.1016/j.neucom. 2013.09.051.
    肖满生, 文志诚, 张居武, 等. 一种改进隶属度函数的FCM聚类算法[J]. 控制与决策, 2015, 30(12): 2270-2274. doi: 10.13195/j.kzyjc.2014.1716.
    XIAO Mansheng, WEN Zhicheng, ZHANG Juwu, et al. An FCM clustering algorithm with improved membership function[J]. Control and Decision, 2015, 30(12): 2270-2274. doi: 10.13195/j.kzyjc.2014.1716.
    申铉京, 何月, 张博, 等. 基于空间信息及隶属度约束的FCM图像分割算法[J]. 北京工业大学学报, 2012, 38(7): 1073-1078.
    SHEN Xuanjing, HE Yue, ZHANG Bo, et al. FCM with spatial information and membership constrains for image segmentation[J]. Journal of Beijing University of Technology, 2012, 38(7): 1073-1078.
    杨章静. 基于邻域结构的特征提取及其在人脸识别中的应用研究[D]. [博士论文], 南京理工大学, 2014.
    YANG Zhangjing. Feature extraction based on neighborhood structure and its applications to face recognition[D]. [Ph.D. dissertation], Nanjing University of Science Engineering, 2014.
    仲崇峰, 刘智, 杨阳, 等. 改进的基于邻域隶属度约束的FCM图像分割算法[J]. 吉林大学学报(信息科学版), 2013, 31(6): 627-633. doi: 10.3969/j.issn.1671-5896.2013.06.012.
    ZHONG Chongfeng, LIU Zhi, YANG Yang, et al. Improved FCM algorithm based on neighboring membership constraint for image segmentation[J]. Journal of Jilin University (Information Science Edition), 2013, 31(6): 627-633. doi: 10.3969/j.issn.1671-5896.2013.06.012.
    周文刚, 孙挺, 朱海. 一种基于自适应空间信息改进FCM的图像分割算法[J]. 计算机应用研究, 2015, 32(7): 2205-2208. doi: 10.3969/j.issn.1001-3695.2015.07.070.
    ZHOU Wengang, SUN Ting, and ZHU Hai. Image segmentation algorithm based on FCM optimized by adaptive spatial information[J]. Application Research of Computers, 2015, 32(7): 2205-2208. doi: 10.3969/j.issn.1001- 3695.2015.07.070.
    王媛媛. 合理利用空间信息的模糊C均值脑部MR图像分割算法研究[D]. [硕士论文], 西安电子科技大学, 2012.
    WANG Yuanyuan. The study of Fuzzy C-means algorithm incorporating spatial information for brain MR image segmentation[D]. [Master dissertation], Xidian University, 2012.
    KANNAN S R, DEVI R, RAMATHILAGAM S, et al. Effective FCM noise clustering algorithms in medical images[J]. Computers in Biology and Medicine, 2013, 43(2): 73-83. doi: 10.1016/j.compbiomed.2012.10.002.
    ZHU C J, YANG S Z, ZHAO Q, et al. Robust semi-supervised kernel-FCM algorithm incorporating local spatial information for remote sensing image classification[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(1): 35-49. doi: 10.1007/s12524-013-0296-x.
    QAMAR U. A dissimilarity measure based fuzzy c-means (FCM) clustering algorithm[J]. Journal of Intelligent Fuzzy Systems: Applications in Engineering and Technology, 2014, 26(1): 229-238. doi: 10.3233/IFS-120730.
    孟海东, 马娜娜, 宋宇晨, 等. 基于密度函数加权的模糊C均值聚类算法研究[J]. 计算机工程与应用, 2012, 48(27): 123-127. doi: 10.3778/j.issn.1002-8331.2012.27.026.
    MENG Haidong, MA Nana, SONG Yuchen, et al. Research on Fuzzy C-Means clustering algorithm based on density function weighted[J]. Computer Engineering and Applications, 2012, 48(27): 123-127. doi: 10.3778/j.issn.1002-8331.2012.27. 026.
    FALLAHI A, KHOTANLOUT H, POOYAN M, et al. Segmentation of uterine using neighborhood information affected possibilistic FCM and gaussian mixture model in uterine fibroid patients MRI[J]. Biomedical Engineering: Applications, Basis and Communications, 2014, 26(1): 1450010. doi: 10.4015/S1016237214500100.
    周绍光, 贾凯华, 殷楠. 一种利用像素邻域信息的模糊聚类图像分割算法[J]. 测绘科学, 2013, 38(1): 153-155. doi: 10.3969/ j.issn.1671-0428.2008.09.006.
    ZHOU Shaoguang, JIA Kaihua, and YIN Nan. An improved fuzzy C-means algorithm using pixels neighborhood information in image segmentation[J]. Science of Surveying and Mapping, 2013, 38(1): 153-155. doi: 10.3969/j.issn. 1671-0428.2008.09.006.
    杨晖, 尹凤杰. 结合空间信息的FCM脑图像分割[J]. 辽宁大学学报(自然科学版), 2014, 41(3): 235-239. doi: 10.3969/ j.issn.1000-5846.2014.03.008.
    YANG Hui and YIN Fengjie. The brain image segmentation based on FCM with spatial information[J]. Journal of Liaoning University (Natural Sciences Edition), 2014, 41(3): 235-239. doi: 10.3969/j.issn.1000-5846.2014.03.008.
    杨同峰. 基于空间关系的图像检索与分类研究[D]. [博士论文], 山东大学, 2013.
    YANG Tongfeng. Research on image retrieval and classification based on spatial relational ships[D]. [Ph.D. dissertation], Shandong University, 2013.
  • 加载中
计量
  • 文章访问数:  1541
  • HTML全文浏览量:  264
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-05
  • 修回日期:  2016-12-20
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回