高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子狼群进化的多目标汇聚节点覆盖算法

金杉 金志刚

金杉, 金志刚. 基于量子狼群进化的多目标汇聚节点覆盖算法[J]. 电子与信息学报, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693
引用本文: 金杉, 金志刚. 基于量子狼群进化的多目标汇聚节点覆盖算法[J]. 电子与信息学报, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693
JIN Shan, JIN Zhigang. Multi-objective Sink Nodes Coverage Algorithm Based on Quantum Wolf Pack Evolution[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693
Citation: JIN Shan, JIN Zhigang. Multi-objective Sink Nodes Coverage Algorithm Based on Quantum Wolf Pack Evolution[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693

基于量子狼群进化的多目标汇聚节点覆盖算法

doi: 10.11999/JEIT160693
基金项目: 

国家自然科学基金(61571318),青海省科技项目(2015-ZJ-904),海南省科技项目(ZDYF2016153)

Multi-objective Sink Nodes Coverage Algorithm Based on Quantum Wolf Pack Evolution

Funds: 

The National Natural Science Foundation of China (61571318), The Qinghai Province Science and Technology Program (2015-ZJ-904), The Hainan Province Science and Technology Program (ZDYF2016153)

  • 摘要: 在构建双层无线传感器网络中,汇聚层覆盖需要考虑无重复覆盖面积、汇聚节点连通性和能耗平衡这3个关键问题。该文将上述3个问题统筹为多目标优化难题(MOP),提出一种面向汇聚节点覆盖的量子狼群进化算法(QWPEA),选择出候选头狼(CLW)群体,以滑模交叉、量子旋转门、非门变异等方法产生寻优高效的下一代量子编码人工狼。仿真结果表明,该文所提算法能够有效减少汇聚节点数,提高汇聚层结构稳定性,并平衡网络能耗,适于大范围,大规模传感器节点网络部署环境。在800 m800 m面积部署传感器节点达到1000个时,汇聚有效覆盖率较MOPSO, NSGA-II算法分别高29.55%和25.93%,汇聚通信能耗率分别高15.27%和18.63%,汇聚占通率分别低14.01%和15.46%。
  • 罗旭, 柴利, 杨君. 异构传感器网络多目标多重覆盖策略[J]. 电子与信息学报, 2014, 36(3): 690-695. doi: 10.3724/SP. J.1146.2013.00667.
    LUO Xu, CHAI Li, and YANG Jun. Multi-objective strategy of multiple coverage in heterogeneous sensor networks[J]. Journal of Electronics Information Technology, 2014, 36(3): 690-695. doi: 10.3724/SP.J.1146.2013.00667.
    ZHU Yanmin, XUE Cuiyao, CAI Haibin, et al. On deploying relays for connected indoor sensor networks[J]. Journal of Communications and Networks, 2014, 16(3): 335-343. doi: 10.1109/JCN.2014.000054.
    ARIVUDAINAMBI D, SREEKANTH G, and BALAJI S. Energy efficient sensor scheduling for target coverage in wireless sensor network[C]. International Conference on Wireless Communications, Networking and Applications (WCNA), Shenzhen, China, 2014: 693-705. doi: 10.1007/ 978-81-322-2580-5_62.
    TIAN Jingwen, GAO Meijuan, and GE Guangshuang. Wireless sensor network node optimal coverage based on improved genetic algorithm and binary ant colony algorithm [J]. Eurasip Journal on Wireless Communications and Networking, 2016, 2016(1): 1-11. doi: 10.1186/s13638-016- 0605-5.
    OZDEMIR S, ATTEA B A, and KHALIL O A. Multi-objective evolutionary algorithm based on decomposition for energy efficient coverage in wireless sensor networks[J]. Wireless Personal Communications, 2013, 71(1): 195-215. doi: 10.1007/s11277-012-0811-3.
    CHEN Zhi, LI Shuai, and YUE Wenjing. Memetic algorithm- based multi-objective coverage optimization for wireless sensor networks[J]. Sensors, 2014, 14(11): 20500-20518. doi: 10.3390/s141120500.
    李旭, 尹华锐, 卫国. 区域覆盖下的最优中继部署与功率分配[J]. 电子与信息学报, 2015, 37(10): 2446-2451. doi: 10.11999/ JEIT141444.
    LI Xu, YIN Huarui, and WEI Guo. Optimal relay deployment and power allocation for extending wireless coverage[J]. Journal of Electronics Information Technology, 2015, 37(10): 2446-2451. doi: 10.11999/JEIT141444.
    HE Yong, DENG Yun, and LUO Mingxing. The improved evolution paths to speedup quantum evolution[J]. International Journal of Theoretical Physics, 2016, 55(4): 1977-1987. doi: 10.1007/s10773-015-2838-1.
    吴虎胜, 张凤鸣, 战仁军, 等. 利用改进的二进制狼群算法求解多维背包问题[J]. 系统工程与电子技术, 2015, 37(5):
    WU Husheng, ZHANG Fengming, ZHAN Renjun, et al. Improved binary wolf pack algorithm for solving multidimensional knapsack problem[J]. Systems Engineering and Electronics, 2015, 37(5): 1084-1091. doi: 10.3969/ =j.issn. 1001-506X.2015.05.17.
    ZHAO Zhijin, PENG Zhen, ZHENG Shilian, et al. Cognitive radio spectrum allocation using evolutionary algorithms[J]. IEEE Transactions on Wireless Communications, 2009, 8(9): 4421-4425. doi: 10.1109/TWC.2009.080939.
    COELLO C A C and LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. IEEE World Congress on Computational Intelligence (WCCI2002), Honolulu, USA, 2002: 1051-1056.
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017.
    -1091. doi: 10.3969/j.issn.1001-506X.2015.05.17.
  • 加载中
计量
  • 文章访问数:  1201
  • HTML全文浏览量:  126
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-04
  • 修回日期:  2016-12-09
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回