高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机森林的频谱域光学相干层析技术的图像视网膜神经纤维层分割

陈强 徐军 牛四杰

陈强, 徐军, 牛四杰. 基于随机森林的频谱域光学相干层析技术的图像视网膜神经纤维层分割[J]. 电子与信息学报, 2017, 39(5): 1101-1108. doi: 10.11999/JEIT160663
引用本文: 陈强, 徐军, 牛四杰. 基于随机森林的频谱域光学相干层析技术的图像视网膜神经纤维层分割[J]. 电子与信息学报, 2017, 39(5): 1101-1108. doi: 10.11999/JEIT160663
CHEN Qiang, XU Jun, NIU Sijie. Retinal Nerve Fiber Layer Segmentation of Spectral Domain Optical Coherence Tomography Images Based on Random Forest[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1101-1108. doi: 10.11999/JEIT160663
Citation: CHEN Qiang, XU Jun, NIU Sijie. Retinal Nerve Fiber Layer Segmentation of Spectral Domain Optical Coherence Tomography Images Based on Random Forest[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1101-1108. doi: 10.11999/JEIT160663

基于随机森林的频谱域光学相干层析技术的图像视网膜神经纤维层分割

doi: 10.11999/JEIT160663
基金项目: 

国家自然科学基金(61671242),中央高校基本科研业务费专项资金(30920140111004),六大人才高峰(2014-SWYY-024),福建省信息处理与智能控制重点实验室(闽江学院)开放课题基(MJUKF201706)

Retinal Nerve Fiber Layer Segmentation of Spectral Domain Optical Coherence Tomography Images Based on Random Forest

Funds: 

The National Natural Science Foundation of China (61671242), The Special Funds of Fundamental Research for the Central Universities (30920140111004), Six Big Talent Peals (2014-SWYY-024), The Open Fund Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University)(MJUKF201706)

  • 摘要: 频谱域光学相干层析技术是一种广泛应用于眼科疾病诊断的成像技术,而视网膜层分割对青光眼的诊断有很好的参考价值。该文利用随机森林分类器寻找视网膜层间单像素宽的边界,随机森林分类器由12个特征训练产生,其中相对灰度特征和邻域特征较好地解决灰度不均匀的分割误差大问题。对10组带有青光眼病变的视网膜图像进行分割,并与传统算法和Iowa软件进行比较,平均边界绝对误差为9.202.57 m, 11.332.99 m和10.273.01 m。实验结果表明,改进算法可以较好地分割视网膜神经纤维层。
  • OJIMA T, TANABE T, HANGAI M, et al. Measurement of retinal nerve fiber layer thickness and macular volume forglaucoma detection using optical coherence tomography[J]. Japanese Journal of Ophthalmology, 2007, 51(3): 197-203. doi: 10.1111/cxo.12366.
    牛四杰, 陈强, 陆圣陶, 等. 应用多尺度三维图搜索的SD- OCT图像层分割方法[J]. 计算机科学, 2015, 42(9): 272-277. doi: 10.11896/j.issn.1002-137X.2015.9.053.
    NIU Sijie, CHEN Qiang, LU Shengtao, et al. SD-OCT image layer segmentation using multi-scale 3-D graph search method[J]. Computer Science, 2015, 42(9): 272-277. doi: 10. 11896/j.issn.1002-137X.2015.9.053.
    MACIEJ W, TOMASZ B, PIOTR T, et al. Real-time in vivo imaging by high-speed spectral optical coherence tomography [J]. Optics Letters, 2003, 28(19): 1745-1747. doi: 10.1364/ OL.28.001745.
    YANG Q, REISMAN C A, WANG Z, et al. Automated layer segmentation of macular OCT images using dual-scale gradient information[J]. Optics Express, 2010, 18(20): 21293-21307. doi: 10.1364/oe.18.021293.
    VERMEER K A, VAN DER SCHOOT J, LEMIJ H G, et al. Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images[J]. Biomedical Optics Express, 2011, 2(6): 1743-1756. doi: 10.1364/boe.2.001743.
    LANG A, CARASS A, HAUSER M, et al. Retinal layer segmentation of macular OCT images using boundary classification[J]. Biomedical Optics Express, 2013, 4(7): 1133-1152. doi: 10.1364/boe.4.001133.
    YAZDANPANAH A, HAMARNEH G, SMITH B R, et al. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach[J]. IEEE Transactions on Medical Imaging, 2011, 30(2): 484-496. doi: 10.1109/tmi.2010.2087390.
    CHIU S J, LI X T, NICHOLAS P, et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation[J]. Optics Express, 2010, 18(18): 19413-19428. doi:10.1364/oe.18. 019413.
    ABRAMOFF M D, GARVIN M K, and SONKA M. Retinal imaging and image analysis[J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 169-208. doi: 10.1109/RBME.2010. 2084567.
    CHEN X, NIEMEIJER M, ZHANG L, et al. Three- dimensional segmentation of fluid-associated abnormalities in retinal OCT: Probability constrained graph-search-graph- cut[J]. IEEE Transactions on Medical Imaging, 2012, 31(8): 1521-1531. doi: 10.1109/tmi.2012.2191302.
    CHEN Q, DE SISTERNES L, LENG T, et al. Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images[J]. Journal of Digital Imaging, 2015, 28(3): 346-361. doi: 10.1007/s 10278-014-9742 -8.
    CHEN Q, FAN W, NIU S, et al. Automated choroid segmentation based on gradual intensity distance in HD-OCT images[J]. Optics Express, 2015, 23(7): 8974-8994. doi: 10. 1364/oe.23.008974.
    CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems Technology, 2011, 2(3): 389-396. doi: 10.1145/1961189. 1961199.
  • 加载中
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  144
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-24
  • 修回日期:  2017-03-23
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回