高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高轨星机BiSAR分辨率分析及成像参数优化设计

刘文康 孙光才 陈溅来 邢孟道

刘文康, 孙光才, 陈溅来, 邢孟道. 高轨星机BiSAR分辨率分析及成像参数优化设计[J]. 电子与信息学报, 2016, 38(12): 3152-3158. doi: 10.11999/JEIT160656
引用本文: 刘文康, 孙光才, 陈溅来, 邢孟道. 高轨星机BiSAR分辨率分析及成像参数优化设计[J]. 电子与信息学报, 2016, 38(12): 3152-3158. doi: 10.11999/JEIT160656
LIU Wenkang, SUN Guangcai, CHEN Jianlai, XING Mengdao. Method for GEO Spaceborne-airborne BiSAR Resolution Analysis and Imaging Parameters Optimal Design[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3152-3158. doi: 10.11999/JEIT160656
Citation: LIU Wenkang, SUN Guangcai, CHEN Jianlai, XING Mengdao. Method for GEO Spaceborne-airborne BiSAR Resolution Analysis and Imaging Parameters Optimal Design[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3152-3158. doi: 10.11999/JEIT160656

高轨星机BiSAR分辨率分析及成像参数优化设计

doi: 10.11999/JEIT160656
基金项目: 

国家自然科学基金(61301292),空间测控通信创新探索基金(201509A)

Method for GEO Spaceborne-airborne BiSAR Resolution Analysis and Imaging Parameters Optimal Design

Funds: 

The National Natural Science Foundation of China (61301292), AeroSpace T.T. C. Innovation Program (201509A)

  • 摘要: 高轨SAR具有覆盖范围广,重访时间短的优势。但是如果采用高轨SAR卫星同时作为发射机和接收机,不能充分发挥高轨SAR的这些优点。采用飞机或低轨卫星作为接收机平台不但能够更灵活地针对目标区域成像,而且分辨率也将大大提高。但是星机双基SAR(BiSAR)的几何构型复杂,难以直观地获知任意几何构型BiSAR的分辨率特性。该文从BiSAR基平面分辨率出发,根据几何构型得到基平面分辨率与地平面分辨率之间的几何关系,解析地表示出了BiSAR在地平面上的分辨率形状。据此可以评估BiSAR系统的分辨力,并且能够通过优化设计系统带宽和合成孔径时间两个参数使得BiSAR系统能够实现更好的分辨率特性。最后,仿真结果验证了方法的有效性。
  • HU Bin, JIANG Yicheng, ZHANG Shunsheng, et al. Focusing of geosynchronous SAR with nonlinear chirp scaling algorithm[J]. Electronics Letters, 2015, 51(15): 1195-1197. doi: 10.1049/el.2015.0580.
    WU Xiaoli, WANG Wei, CHEN Qi, et al. The burst mode of geosynchronous synthetic aperture radar[C]. IEEE Asia- Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 200-203. doi: 10.1109/APSAR.2015. 7306188.
    ZHANG Xin, HUANG Puming, and WANG Weiwei. Equivalent slant range model for geosynchronous SAR[J]. Electronics Letters, 2015, 51(10): 783-785. doi: 10.1049/el. 2014.3593.
    WU Junjie, SUN Zhichao, HUANG Yulin, et al. Geosynchronous spaceborne-airborne bistatic SAR: Potentials and prospects[C]. IEEE Radar Conference (RadarCon), Arlington, VA, USA, 2015: 1172-1176. doi: 10.1109/ RADAR.2015.7131171.
    ZENG Tao, AO Dongyang, HU Cheng, et al. Multiangle BSAR imaging based on BeiDou-2 navigation satellite system: Experiments and preliminary results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5760-5773. doi: 10.1109/TGRS.2015.2430312.
    QIU Xiaolan, HAN Bin, MENG Dadi, et al. An azimuth resample method for bistatic SAR motion compensation[C]. European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 2010: 1-4.
    ZENG Dazhi, ZENG Tao, HU Cheng, et al. Back-projection algorithm characteristic analysis in forward-looking bistatic SAR[C]. CIE International Conference on Radar, Shanghai, China, 2006: 1-4. doi: 10.1109/ICR.2006.343181.
    ZENG Tao, CHERNIAKOV M, and LONG Teng, Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 461-474. doi: 10.1109/TAES.2005.1468741.
    LIU F, ANTONIOU M, ZENG Z, et al. Point spread function analysis for BSAR with GNSS transmitters and long dwell times theory and experimental confirmation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 781-785. doi: 10.1109/LGRS.2012.2223655.
    SUN Zhichao, WU Junjie, HUANG Yulin, et al. Inclined geosynchronous spaceborne-airborne bistatic SAR: Performance analysis and mission design[C]. IEEE Radar Conference (RadarCon), Arlington, VA, USA, 2015: 1177-1181. doi: 10.1109/RADAR.2015.7131172.
    WANG Jingen, WANG Yanfei, ZHANG Jianming, et al. Resolution calculation and analysis in bistatic SAR with geostationary illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 194-198. doi: 10.1109/LGRS. 2012.2197850.
    LI Zengliang, ZHAO Xin, and DING Zegang. Analysis of diving squint SAR resolution[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, 2011, 1: 875-878. doi: 10.1109/CIE-Radar.2011.6159680.
    龙杰, 姚迪, 孙英钦, 等. 基于分辨椭圆的前斜SAR分辨率分析方法[J]. 电子学报, 2013, 41(12): 2493-2495. doi: 10.3969/ j.issn.0372-2112.2013.12.027.
    LONG Jie, YAO Di, SUN Yingqin, et al. The method of resolution analysis based on distinguishable ellipse in squinted SAR[J]. Acta Electronica Sinica, 2013, 41(12): 2493-2495. doi: 10.3969/j.issn.0372-2112.2013.12.027.
    CHEN Jianlai, SUN Guangcai, YANG Jun, et al. Systematic analyses of challenges and solutions in geosynchronous synthetic aperture radar[C]. Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 78-79. doi: 10.1109/APSAR.2015.7306158.
    ZHANG Qingjun, YIN Wei, and DING Zegang. An optimal resolution steering method for geosynchronous orbit SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1732-1736. doi: 10.1109/LGRS.2014.2307167.
  • 加载中
计量
  • 文章访问数:  1072
  • HTML全文浏览量:  103
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-21
  • 修回日期:  2016-11-14
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回