高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波束域分块RDLMS的机载外辐射源雷达杂波对消算法

杨鹏程 吕晓德 刘宇 柴致海 张丹

杨鹏程, 吕晓德, 刘宇, 柴致海, 张丹. 基于波束域分块RDLMS的机载外辐射源雷达杂波对消算法[J]. 电子与信息学报, 2017, 39(4): 960-967. doi: 10.11999/JEIT160595
引用本文: 杨鹏程, 吕晓德, 刘宇, 柴致海, 张丹. 基于波束域分块RDLMS的机载外辐射源雷达杂波对消算法[J]. 电子与信息学报, 2017, 39(4): 960-967. doi: 10.11999/JEIT160595
YANG Pengcheng, Lü Xiaode, LIU Yu, CHAI Zhihai, ZHANG Dan. Clutter Cancellation Algorithm for Airborne Passive Radar Based on Block RDLMS in Beam Domain[J]. Journal of Electronics & Information Technology, 2017, 39(4): 960-967. doi: 10.11999/JEIT160595
Citation: YANG Pengcheng, Lü Xiaode, LIU Yu, CHAI Zhihai, ZHANG Dan. Clutter Cancellation Algorithm for Airborne Passive Radar Based on Block RDLMS in Beam Domain[J]. Journal of Electronics & Information Technology, 2017, 39(4): 960-967. doi: 10.11999/JEIT160595

基于波束域分块RDLMS的机载外辐射源雷达杂波对消算法

doi: 10.11999/JEIT160595

Clutter Cancellation Algorithm for Airborne Passive Radar Based on Block RDLMS in Beam Domain

  • 摘要: 针对机载外辐射源雷达多普勒展宽的杂波对消问题,该文首先从降低计算量的角度出发,提出了波束域分块RDLMS算法。通过波束形成降低了多普勒维对消阶数,通过分块减小了迭代次数并可以利用FFT快速实现。分析表明,所提算法能够大幅降低杂波对消的计算量,为实时处理提供了支撑。其次,在处理性能方面,由于算法对所有滤波器系数采用相同的步长,当杂噪比较高时会有较大的对消残余;根据系数比例自适应算法的思想,该文提出了改进算法,对不同的滤波器系数采用不同的步长,步长的大小与滤波器系数的对数成正比。仿真表明,改进算法使杂波对消残余降低了1.3 dB,对消性能接近理想。
  • GRIFFITHS H and BAKER C. Passive coherent location radar systems. Part 1: performance prediction[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 153-159. doi: 10.1049/ip-rsn:20045082.
    DAWIDOWICZ B, KULPA K S, and MALANOWSKI M. Suppression of the ground clutter in airborne PCL radar using DPCA technique[C]. European Radar Conference, Rome, Italy, 2009: 306-309.
    BROWN J, WOODBRIDGE K, STOVE A, et al. Air target detection using airborne passive bistatic radar[J]. Electronics Letters, 2010, 46(20): 1396-1397. doi: 10.1049/el.2010.1732.
    TAN D K P, LESTURGIE M, SUN H, et al. Target detection performance analysis for airborne passive bistatic radar[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, USA, 2010: 3553-3556. doi: 10.1109/IGARSS.2010.5652159.
    KULPA K, MALANOWSKI M, SAMCZYNSKI P, et al. The concept of airborne passive radar[C]. IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), Kiev, Ukraine, 2011: 267-270. doi: 10.1109/MRRS.2011.6053651.
    KULPA K, MALANOWSKI M, SAMCZYNSKI P, et al. On-board PCL systems for airborne platform protection[C]. Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, Italy, 2011: 119-122.
    BROWN J, WOODBRIDGE K, GRIFFITHS H, et al. Passive bistatic radar experiments from an airborne platform [J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(11): 50-55. doi: 10.1109/MAES.2012.6380826.
    DAWIDOWICZ B, KULPA K S, MALANOWSKI M, et al. DPCA detection of moving targets in airborne passive radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1347-1357. doi: 10.1109/TAES.2012.6178066.
    DAWIDOWICZ B, SAMCZYNSKI P, MALANOWSKI M, et al. Detection of moving targets with multichannel airborne passive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(11): 42-49. doi: 10.1109/MAES.2012. 6380825.
    WU Q, ZHANG Y D, AMIN M G, et al. Space-time adaptive processing in bistatic passive radar exploiting group sparsity[C]. IEEE Radar Conference, Arlington, USA, 2015: 886-890. doi: 10.1109/RADAR.2015.7131120.
    RABASTE O and POULLIN D. Rejection of Doppler shifted multipaths in airborne passive radar[C]. IEEE Radar Conference, Arlington, USA, 2015: 1660-1665. doi: 10.1109/ RADAR.2015.7131265.
    PALMER J, CRISTALLINI D, and KUSCHEL H. Opportunities and current drivers for passive radar research [C]. IEEE Radar Conference, Johannesburg, Africa, 2015: 145-150. doi: 10.1109/RadarConf.2015.7411870.
    BERTHILLOT C, SANTORI A, RABASTE O, et al. Improving BEM channel estimation for airborne passive radar reference signal reconstruction[C]. International Radar Symposium (IRS), Dresden, Germany, 2015: 77-82. doi: 10.1109/IRS.2015.7226351.
    AHMADI M J, AMIRI R, and BEHNIA F. Mitigation of range and velocity walk in airborne passive radar with long integration time[C]. Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2015: 514-517. doi: 10.1109/IranianCEE.2015.7146270.
    TAN D K P, LESTURGIE M, SUN H, et al. Spacetime interference analysis and suppression for airborne passive radar using transmissions of opportunity[J]. IET Radar, Sonar Navigation, 2014, 8(2): 142-152. doi: 10.1049/iet-rsn. 2013.0190.
    万显荣, 梁龙, 但阳鹏, 等. 移动平台外辐射源雷达实验研究 [J]. 电波科学学报, 2015, 30(2): 383-390. doi: 10.13443/j.cjors. 2014042301.
    WAN Xianrong, LIANG Long, DAN Yangpeng, et al. Experimental research of passive radar on moving platform[J]. Chinese Journal of Radio Science, 2015, 30(2): 383-390. doi: 10.13443/j.cjors.2014042301.
    刘立刚, FUKUMOTO M, 张世永. 一种变步长Proportionate NLMS自适应滤波算法及其在网络回声消除中的应用[J]. 电子学报, 2010, 38(4): 973-978.
    LIU Ligang, FUKUMOTO M, and ZHANG Shiyong. A variable step-size Proportionate NLMS adaptive filtering algorithm and its application in network echo cancellation[J]. Acta Electronica Sinica, 2010, 38(4): 973-978.
  • 加载中
计量
  • 文章访问数:  5223
  • HTML全文浏览量:  82
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-03
  • 修回日期:  2016-10-26
  • 刊出日期:  2017-04-19

目录

    /

    返回文章
    返回