高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Levy噪声驱动下指数型单稳系统的随机共振特性分析

张刚 宋莹 张天骐

张刚, 宋莹, 张天骐. Levy噪声驱动下指数型单稳系统的随机共振特性分析[J]. 电子与信息学报, 2017, 39(4): 893-900. doi: 10.11999/JEIT160579
引用本文: 张刚, 宋莹, 张天骐. Levy噪声驱动下指数型单稳系统的随机共振特性分析[J]. 电子与信息学报, 2017, 39(4): 893-900. doi: 10.11999/JEIT160579
ZHANG Gang, SONG Ying, ZHANG Tianqi. Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise[J]. Journal of Electronics & Information Technology, 2017, 39(4): 893-900. doi: 10.11999/JEIT160579
Citation: ZHANG Gang, SONG Ying, ZHANG Tianqi. Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise[J]. Journal of Electronics & Information Technology, 2017, 39(4): 893-900. doi: 10.11999/JEIT160579

Levy噪声驱动下指数型单稳系统的随机共振特性分析

doi: 10.11999/JEIT160579
基金项目: 

国家自然科学基金(61371164),重庆市杰出青年基金(CSTC2011jjjq40002),重庆市教育委员会科研项目(KJ130524)

Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise

Funds: 

The National Natural Science Foundation of China (61371164), The Chongqing Distinguished Youth Foundation (CSTC2011jjjq40002), The Research Project of Chongqing Educational Commission (KJ130524)

  • 摘要: 该文基于绝对值型和指数型势函数,构建了更一般的指数型单稳势函数,深入研究了Levy噪声驱动的指数型单稳系统,并总结出不同特征指数和不同对称参数下,指数型系统参数l和b,Levy噪声强度系数D对指数系统共振输出的作用规律。研究表明:在不同Levy噪声驱动下,通过调节参数l和b均可诱导随机共振(SR),且当b(或l)的取值越大时,产生较好随机共振效果l(或b)的区间越大,从而改善传统SR系统由于参数选择不当造成随机共振效果不佳的问题。此外,通过调节噪声强度系数D也能产生随机共振,且较好随机共振区间不随或变化;最后将指数型单稳系统应用于轴承故障检测,效果明显优于传统双稳系统。
  • EINSTEIN A. ?ber die von der molekularkinetischen theorie der w?rme geforderte bewegung von in ruhenden flssigkeiten suspendierten teilchen[J]. Annalen der Physik, 1905, 17(8): 549-560.
    BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11) 453-457. doi: 10.1088/0305-4470/14/11/006.
    梁军利, 杨树元, 唐志峰. 基于随机共振的微弱信号检测[J].电子与信息学报, 2006, 28(6): 1068-1072.
    LIANG Junli, YANG Shuyuan, and TANG Zhifeng. Weak signal detection based on stochastic resonance[J]. Journal of Electronics Information Technology, 2006, 28(6): 1068-1072.
    WANG Zhanqing, XU Y, and YANG H. Levy noise induced stochastic resonance in an FHN model[J]. Science China Technological Sciences, 2016, 59(3): 371-375. doi: 10.1007/ s11431-015-6001-2.
    GITTERMAN M. Classical harmonic oscillator with multiplicative noise[J]. Physica A Statistical Mechanics Its Applications, 2005, 352(s 2/4): 309-334. doi: 10.1016/j.physa. 2005.01.008.
    郑俊, 林敏. 基于双共振的微弱信号检测方法与试验研究[J]. 机械工程学报, 2014, 50(12): 11-16. doi: 10.3901/JME.2014. 12.011.
    ZHENG Jun and LIN Min. Experimental research of weak signal detection method based on the dual-resonance[J]. Journal of Mechanical Engineering 2014, 50(12): 11-16. doi: 10.3901/JME.2014.12.011.
    陆思良. 基于随机共振的微弱信号检测模型及应用研究[D]. [博士论文], 中国科学技术大学, 2015.
    LU Siliang. Models and applications of stochastic resonance based weak signal detection[D]. [Ph.D. dissertation], University of Science and Technology of China, 2015.
    田祥友, 冷永刚, 范胜波. 一阶线性系统的调参随机共振研究[J]. 物理学报, 2013, 62(2): 95-102. doi: 10.7498/aps.62.020505.
    TIAN Xiangyou, LENG Yonggang, and FAN Shengbo. Parameter-adjusted stochastic resonance of first-order linear system[J]. Acta Physica Sinica, 2013 62(2): 95-102. doi: 10.7498/aps.62.020505.
    袁季冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振[J]. 物理学报, 2014, 63(16): 242-252. doi: 10.7498/ aps.63.164302.
    YUAN Jidong, ZHANG Lu, and LUO Maokang. Generalized stochastic resonance of power function type single-well system[J]. Acta Physica Sinica, 2014, 63(16): 242-252. doi: 10.7498/aps.63.164302.
    赖志慧, 冷永刚. 三稳系统的动态响应及随机共振[J]. 物理学报, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503.
    LAI Zhihui and LENG Yonggang. Dynamic response and stochastic resonance of a tri-stable system[J]. Acta Physica Sinica, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503.
    GILBARG D and TRUDINGER N S. Elliptic Partial Differential Equations of Second Order[M]. Berlin Heidelberg, Springer-Verlag. 1977: 469-484.
    CHAMBERS J M. Display and analysis of spatial data: NATO advanced study institute[J]. Journal of the American Statistical Association, 1976, 71(355): 768-769. doi: 10.2307 /2285621.
    WERON R. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables[J] Statistics Probability Letters, 1996, 28(2): 165-171. doi: 10.1016/0167- 7152(95)00113-1.
    张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析[J]. 物理学报, 2015, 64(22): 72-81. doi: 10.7498/ aps.64.220502.
    ZHANG Gang, HU Tao, and ZHANG Tianqi. Characteristic analysis of power function type monostable stochastic resonance with Levy noise[J]. Acta Physica Sinica, 2015, 64(22): 72-81. doi: 10.7498/aps.64.220502.
    ZHANG Haibin, HE Qingbo, and KONG Fanrang. Stochastic resonance in an underdamped system with pinning potential for weak signal detection[J]. Sensors, 2015, 15(9): 21169-21195. doi: 10.3390/s150921169.
    QIAO Zijian and PAN Zhengrong. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient[J]. Measurement Science Technology, 2015, 26(8): 15-30. doi: 10.1088/0957-0233/26/8/085014.
  • 加载中
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  121
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-03
  • 修回日期:  2016-11-25
  • 刊出日期:  2017-04-19

目录

    /

    返回文章
    返回