高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二元译码信息的迭代大数逻辑LDPC译码算法及其量化优化

黎相成 陈海强 梁奇 孙友明 万海斌 覃团发

黎相成, 陈海强, 梁奇, 孙友明, 万海斌, 覃团发. 基于二元译码信息的迭代大数逻辑LDPC译码算法及其量化优化[J]. 电子与信息学报, 2017, 39(4): 873-880. doi: 10.11999/JEIT160563
引用本文: 黎相成, 陈海强, 梁奇, 孙友明, 万海斌, 覃团发. 基于二元译码信息的迭代大数逻辑LDPC译码算法及其量化优化[J]. 电子与信息学报, 2017, 39(4): 873-880. doi: 10.11999/JEIT160563
LI Xiangcheng, CHEN Haiqiang, LIANG Qi, SUN Youming, WAN Haibin, QIN Tuanfa. Binary Decoding Message Iterative Majority-logic LDPC Decoding and Its Quantizing Optimization[J]. Journal of Electronics & Information Technology, 2017, 39(4): 873-880. doi: 10.11999/JEIT160563
Citation: LI Xiangcheng, CHEN Haiqiang, LIANG Qi, SUN Youming, WAN Haibin, QIN Tuanfa. Binary Decoding Message Iterative Majority-logic LDPC Decoding and Its Quantizing Optimization[J]. Journal of Electronics & Information Technology, 2017, 39(4): 873-880. doi: 10.11999/JEIT160563

基于二元译码信息的迭代大数逻辑LDPC译码算法及其量化优化

doi: 10.11999/JEIT160563
基金项目: 

国家自然科学基金(61261023, 61362010, 61661005),广西自然科学基金(2014GXNSFBA118276)

Binary Decoding Message Iterative Majority-logic LDPC Decoding and Its Quantizing Optimization

Funds: 

The National Natural Science Foundation of China (61261023, 61362010, 61661005), The Natural Science Foundation of Guangxi (2014GXNSFBA118276)

  • 摘要: 该文提出一种低复杂度的迭代大数逻辑LDPC译码算法,在迭代过程中所有的译码信息都以二元形式进行传递、处理和迭代更新。所提算法不需要计算外信息,而是利用Tanner图上伴随式的对错状态来评判节点可靠度。与现有的几种迭代大数逻辑译码算法相比,该文算法也不需要信息修正处理,避免了相应的实数乘法操作,具有很低的译码复杂度。此外,该文引入一种特殊的量化处理函数,并给出了基于离散密度进化的参数优化过程。实验仿真表明,该文所提算法与原算法相比,在AWGN信道下可获得约0.3~0.4 dB的性能提升。同时,由于节点间交换传递的译码信息都是基于1个比特位的二元信息,也非常便于硬件的设计与实现。
  • GALLAGER R G. Low density parity check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28. doi: 10.1109/ TIT.1962.1057683.
    CHEN X, KANG J, and LIN S. Memory system optimization for FPGA-based implementation of Quasi-cyclic LDPC codes decoders[J]. IEEE Transactions on Circuits and System, 2011, 58(1): 98-111. doi: 10.1109/TCSI.2010.2055250.
    GUTIERREZ F, GRACIELA C, MORERO D, et al. FPGA implementation of the parity check node for min-sum LDPC decoders[C]. IEEE Conference on Programmable Logic, Bento Goncalves, 2012: 1-6. doi: 10.1109/SPL.2012.6211802.
    KOU Y, LIN S, and FOSSORIER M. Low-density parity-check codes based on finite geometries: a discovery and new results[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2711-2736. doi: 10.1109/18.959255.
    HUANG Q, KANG J Y, ZHANG L, et al. Two reliability-based iterative majority-logic decoding algorithms for LDPC codes[J]. IEEE Transactions on Communications, 2009, 57(12): 3597-3606. doi: 10. 1109/TCOMM.2009.12. 080493.
    CATALA P J M, GARCIA F, VALLS J, et al. Reliability-based iterative decoding algorithm for LDPC codes with low variable-node degree[J]. IEEE Communications Letters, 2014, 18(12): 2065-2068. doi: 10.1109/LCOMM.2014.2363112.
    CHEN H, ZHANG K, MA X, et al. Comparisons between reliability-based iterative min-sum and majority-logic decoding algorithms for LDPC codes[J]. IEEE Transactions on Communications, 2011, 59(7): 1766-1771. doi: 10.1109/ TCOMM.2011.060911.100065.
    NGATCHED T M N, ATTAHIRU S, and JUN C. An improvement on the soft reliability-based iterative majority-logic decoding algorithm for LDPC codes[C]. Proceedings of 2010 IEEE Global Telecommunications Conference, Miami, USA, 2010: 1-5. doi: 10.1109/GLOCOM. 2010.5684111.
    陶雄飞, 王跃东, 柳盼. 基于变量节点更新的LDPC码加权比特翻转译码算法[J]. 电子与信息学报, 2016, 38(3): 688-693. doi: 10.11999/JEIT150720.
    TAO Xiongfei, WANG Yuedong, and LIU Pan. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics Information Technology, 2016, 38(3): 688-693. doi: 10.11999/ JEIT150720.
    陈海强, 罗灵山, 孙友明, 等. 基于大数逻辑可译LDPC码的译码算法研究[J].电子学报, 2015, 43(6): 1169-1173. doi: 10.3969/j.issn. 0372-2112.2015.06.019.
    CHEN Haiqiang, LUO Lingshan, SUN Youming, et al. Decoding algorithms for majority-logic decodable LDPC codes[J]. Acta Electronica Sinica, 2015, 43(6): 1169-1173. doi: 10.3969/j.issn.0372-2112.2015.06.019.
    ZHANG K, CHEN H, and MA X. Adaptive decoding algorithms for LDPC codes with redundant check nodes[C]. 2012 7th IEEE International Symposium on Turbo codes and Iterative Information Processing(ISTC), Gothenburg, 2012: 175-179. doi: 10.1109/ISTC.2012.6325222.
    RICHARDSON T J and URBANKE R L. The capacity of low density parity check codes under message-passing decoding[J]. IEEE Transactions on Information Theory, 2001, 47(2): 599-618. doi: 10.1109/18.910577.
    TANNER R M. A recursive approach to low complexity codes[J]. IEEE Transactions on Information Theory, 1981, 27(5): 533-547. doi: 10.1109/TIT.1981.1056404.
    LI X, QIN T, CHEN H, et al. Hard-information bit- reliability based decoding algorithm for majority-logic decodable non-binary LDPC codes[J]. IEEE Communications Letters, 2016, 20(5): 886-869. doi: 10.1109/LCOMM.2016.2537812.
  • 加载中
计量
  • 文章访问数:  1298
  • HTML全文浏览量:  130
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-01
  • 修回日期:  2016-11-25
  • 刊出日期:  2017-04-19

目录

    /

    返回文章
    返回