高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于非负低秩稀疏图的半监督学习改进算法

张涛 唐振民

张涛, 唐振民. 一种基于非负低秩稀疏图的半监督学习改进算法[J]. 电子与信息学报, 2017, 39(4): 915-921. doi: 10.11999/JEIT160559
引用本文: 张涛, 唐振民. 一种基于非负低秩稀疏图的半监督学习改进算法[J]. 电子与信息学报, 2017, 39(4): 915-921. doi: 10.11999/JEIT160559
ZHANG Tao, TANG Zhenmin. Improved Algorithm Based on Non-negative Low Rank and Sparse Graph for Semi-supervised Learning[J]. Journal of Electronics & Information Technology, 2017, 39(4): 915-921. doi: 10.11999/JEIT160559
Citation: ZHANG Tao, TANG Zhenmin. Improved Algorithm Based on Non-negative Low Rank and Sparse Graph for Semi-supervised Learning[J]. Journal of Electronics & Information Technology, 2017, 39(4): 915-921. doi: 10.11999/JEIT160559

一种基于非负低秩稀疏图的半监督学习改进算法

doi: 10.11999/JEIT160559
基金项目: 

国家自然科学基金(61473154)

Improved Algorithm Based on Non-negative Low Rank and Sparse Graph for Semi-supervised Learning

Funds: 

The National Natural Science Foundation of China (61473154)

  • 摘要: 该文针对基于非负低秩稀疏图的半监督学习算法不能准确地描述数据结构的问题,提出一种融合平滑低秩表示和加权稀疏约束的改进算法。该算法分别对经典算法的低秩项和稀疏项进行改进,准确地捕获了数据的全局子空间结构和局部线性结构。在构建目标函数时,使用对数行列式函数代替核范数平滑地估计秩函数,同时利用形状交互信息和有标签样本的类别信息构造加权稀疏约束正则项。然后通过带有自适应惩罚的线性交替方向方法求解目标函数并采用有效的后处理方法重构数据的图结构,最后利用基于局部和全局一致性的半监督分类框架完成学习任务。在ORL库,Extended Yale B库和USPS库上的实验结果表明,该改进算法提高了半监督学习的准确率。
  • 刘建伟, 刘媛, 罗雄麟. 半监督学习方法[J]. 计算机学报, 2015, 38(8): 1592-1617. doi: 10.11897/SP.J.1016.2015.01592.
    LIU Jianwei, LIU Yuan, and LUO Xionglin. Semi-supervised learning methods[J]. Chinese Journal of Computers, 2015, 38(8): 1592-1617. doi: 10.11897/SP.J.1016.2015.01592.
    ZHU X. Semi-supervised learning literature survey[R]. Madison: University of Wisconsin, 2006.
    LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88.
    ZHUANG L S, GAO H Y, LIN Z C, et al. Non-negative low rank and sparse graph for semi-supervised learning[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2328-2335. doi: 10.1109/CVPR.2012.6247944.
    ZHENG Y G, ZHANG X G, YANG S Y, et al. Low-rank representation with local constraint for graph construction[J]. Neurocomputing, 2013, 122: 398-405. doi: 10.1016/j.neucom. 2013.06.013.
    TANG K W, LIU R S, SU Z X, et al. Structure-constrained low-rank representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12): 2167-2179. doi: 10.1109/TNNLS.2014.2306063.
    PENG Y, LU B L, and WANG S H. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning[J]. Neural Networks, 2015, 65: 1-17. doi: 10.1016/j.neunet.2015.01.001.
    MOHAN K and FAZEL M. Iterative reweighted algorithms for matrix rank minimization[J]. The Journal of Machine Learning Research, 2012, 13(1): 3441-3473.
    王斯琪, 冯象初, 张瑞, 等. 基于最大范数的低秩稀疏分解模型[J]. 电子与信息学报, 2015, 37(11): 2601-2607. doi: 10. 11999/JEIT150468.
    WANG Siqi, FENG Xiangchu, ZHANG Rui, et al. Low-rank sparse decomposition model based on max-norm[J]. Journal of Electronics Information Technology, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468.
    FAZEL M, HINDI H, and BOYD S. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices[C]. Proceedings of the American Control Conference, Denver, USA, 2003, 3: 2156-2162. doi: 10.1109/ACC.2003.1243393.
    KANG Z, PENG C, and CHENG Q. Robust subspace clustering via smoothed rank approximation[J]. IEEE Signal Processing Letters, 2015, 22(11): 2088-2092. doi: 10.1109/ LSP.2015.2460737.
    LIN Z C, LIU R S, and SU Z X. Linearized alternating direction method with adaptive penalty for low-rank representation[C]. Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain, 2011: 612-620.
    ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]. Proceedings of the Advances in Neural Information Processing Systems, Cambridge, UK, 2004: 321-328.
    LIU B, JING L P, YU J, et al. Robust graph learning via constrained elastic-net regularization[J]. Neurocomputing, 2016, 171: 299-312. doi: 10.1016/j.neucom.2015.06.059.
    KANG Z, PENG C, CHENG J, et al. Logdet rank minimization with application to subspace clustering[J]. Computational Intelligence and Neuroscience, 2015, 824289, doi: 10.1155/2015/824289.
    LIN Z C, CHEN M M, and MA Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices [R]. UIUC Technical Report UILU-ENG-09-2215, 2009.
    LIU G C, LIN Z C, and YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010: 663-670.
    ELHAMIFAR E and VIDAL R. Sparse subspace clustering: algorithm,theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 34(11): 2765-2781. doi: 10.1109/TPAMI.2013.57.
  • 加载中
计量
  • 文章访问数:  1532
  • HTML全文浏览量:  122
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-28
  • 修回日期:  2016-09-23
  • 刊出日期:  2017-04-19

目录

    /

    返回文章
    返回