高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于社交网络社区的组推荐框架

刘宇 吴斌 曾雪琳 张云雷 王柏

刘宇, 吴斌, 曾雪琳, 张云雷, 王柏. 一种基于社交网络社区的组推荐框架[J]. 电子与信息学报, 2016, 38(9): 2150-2157. doi: 10.11999/JEIT160544
引用本文: 刘宇, 吴斌, 曾雪琳, 张云雷, 王柏. 一种基于社交网络社区的组推荐框架[J]. 电子与信息学报, 2016, 38(9): 2150-2157. doi: 10.11999/JEIT160544
LIU Yu, WU Bin, ZENG Xuelin, ZHANG Yunlei, WANG Bai. A Group Recommendation Framework Based on Social Network Community[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2150-2157. doi: 10.11999/JEIT160544
Citation: LIU Yu, WU Bin, ZENG Xuelin, ZHANG Yunlei, WANG Bai. A Group Recommendation Framework Based on Social Network Community[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2150-2157. doi: 10.11999/JEIT160544

一种基于社交网络社区的组推荐框架

doi: 10.11999/JEIT160544
基金项目: 

国家重点基础研究发展计划(2013CB329606),北京市共建项目专项

A Group Recommendation Framework Based on Social Network Community

Funds: 

The National Key Basic Research and Department Program of China (2013CB329606), Special Fund for Beijing Common Construction Project

  • 摘要: 面向用户群组的推荐主要面临如何有意义地对群组进行定义并识别,以及向群组内用户进行有效推荐两大问题。该文针对已有研究在用户群组定义解释性不强等存在的问题,提出一种基于社交网络社区的组推荐框架。该框架利用社交网络结构信息发现重叠网络社区结构作为用户群组,具有较强的可解释性,并根据用户与群组间的隶属度制定了考虑用户对群组贡献与用户从群组获利的4种聚合与分配策略,以完成组推荐任务。通过在公开数据集上与已有方法的对比实验,验证了该框架在组推荐方面的有效性和准确性。
  • MASTHOFF J. Recommender Systems Handbook[M]. Boston, MA: Springer US, ch. Group Recommender Systems: Combining Individual Models, 2011: 677-702.
    JAMESON A and SMYTH B. The Adaptive Web: Methods and Strategies of Web Personalization[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, ch. Recommendation to Groups, 2007: 596-627.
    AMER-YAHIA S, ROY S, CHAWLAT A, et al. Group recommendation: Semantics and efficiency[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 754-765. doi: 10.14778/ 1687627.1687713.
    OCONNOR M, COSLEY D, KONSTAN J, et al. ECSCW 2001: Proceedings of the Seventh European Conference on Computer Supported Cooperative Work 1620 September 2001[M]. Bonn, Germany. Dordrecht: Springer Netherlands, ch. PolyLens: A Recommender System for Groups of Users, 2001: 199-218.
    DE CAMPOS L M, FERNANDEZ-LUNA J M, HUETE J F, et al. Group recommending: a methodological approach based on bayesian networks[C]. IEEE 23rd International Conference on Data Engineering Workshop, Istanbul, Turkey, 2007: 835-844.
    OHARA K, LIPSON M, JANSEN M, et al. Jukola: democratic music choice in a public space[C]. Proceedings of the 5th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, New York, USA, 2004: 145-154.
    SPRAGUE D, WU F, and TORY M. Music selection using the partyvote democratic jukebox[C]. Proceedings of the Working Conference on Advanced Visual Interfaces, New York, USA, 2008: 433-436.
    CHAO D L, BALTHROP J, and FORREST S. Adaptive radio: achieving consensus using negative preferences[C]. Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting Group Work, New York, USA, 2005: 120-123.
    MCCARTHY J F and ANAGNOST T D. Musicfx: An arbiter of group preferences for computer supported collaborative workouts[C]. Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, New York, USA, 1998: 363-372.
    SHI J, WU B, and LIN X. A latent group model for group recommendation[C]. 2015 IEEE International Conference on Mobile Services, New York, USA, 2015: 233-238.
    BALTRUNAS L, MAKCINSKAS T, and RICCI F. Group recommendations with rank aggregation and collaborative filtering[C]. Proceedings of the Fourth ACM Conference on Recommender Systems, New York, USA, 2010: 119-126.
    PAZZANI M J and BILLSUS D. The Adaptive Web: Methods and Strategies of Web Personalization[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, ch. Content-Based Recommendation Systems, 2007: 325-341.
    SHI Y, LARSON M, and HANJALIC A. Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges[J]. ACM Computing Surveys, 2014, 47(1): 1-45. doi: 10.1145/2556270.
    王玉斌, 孟祥武, 胡勋. 一种基于信息老化的协同过滤推荐算法[J]. 电子与信息学报, 2013, 35(10): 2391-2396. doi: 10.3724 /SP.J.1146.2012.01743.
    WANG Y, MENG X, and HU X. Information aging-based collaborative filtering recommendation algorithm[J]. Journal of Electronics Information Technology, 2013, 35(10): 2391-2396. doi: 10.3724/SP.J.1146.2012.01743.
    邢星. 社交网络个性化推荐方法研究[D]. [博士论文], 大连海事大学, 2013.
    XING X. Research on recommendation methods in social networks[D]. [Ph.D. dissertation], Dalian Maritime University, 2013.
    涂丹丹, 舒承椿, 余海燕. 基于联合概率矩阵分解的上下文广告推荐算法[J]. 软件学报, 2013, 24(3): 454-464. doi: 10.3724/ SP.J.1001.2013.04238.
    TU D, SHU C, and YU H. Using unified probabilistic matrix factorization for contextual advertisement recommendation [J]. Journal of Software, 2013, 24(3): 454-464. doi: 10.3724/ SP.J.1001.2013.04238.
    GIRVAN M and NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826. doi: 10.1073/ pnas.122653799.
    BORATTO L and CARTA S. Using collaborative filtering to overcome the curse of dimensionality when clustering users in a group recommender system[C]. Proceedings of 16th International Conference on Enterprise Information Systems, Lisbon, Portugal, 2014: 564-572.
    方耀宁, 郭云飞, 丁雪涛, 等. 一种基于局部结构的改进奇异值分解推荐算法[J]. 电子与信息学报, 2013, 35(6): 1284-1289. doi: 10.3724/SP.J.1146.2012.01299.
    FANG Y, GUO Y, DING X, et al. An improved singular value decomposition recommender algorithm based on local structures[J]. Journal of Electronics Information Technology, 2013, 35(6): 1284-1289. doi: 10.3724/SP.J.1146. 2012.01299.
    DING C, LI T, and PENG W, et al. Orthogonal nonnegative matrix t-factorizations for clustering[C]. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2006: 126-135.
    CANTADOR I, and CASTELLS P. Extracting multilayered communities of interest from semantic user profiles: application to group modeling and hybrid recommendations [J]. Computers in Human Behavior, 2011, 27(4): 1321-1336. doi: 10.1016/j.chb.2010.07.027.
    SHI X, LU H, HE Y, et al. Community detection in social network with pairwisely constrained symmetric non-negative matrix factorization[C]. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, France, 2015: 541-546.
    PSORAKIS I, ROBERTS S, EDBEN M, et al. Overlapping community detection using Bayesian non-negative matrix factorization[J]. Physical Review E, 2011, 83(6): 066114. doi: 10.1103/PhysRevE.83.066114.
  • 加载中
计量
  • 文章访问数:  1510
  • HTML全文浏览量:  183
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-27
  • 修回日期:  2016-07-18
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回