高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于直接采样法和子空间优化法的多介质目标混合逆散射成像方法

周辉林 郑灵辉 莫仲念 王玉皞 陈良兵

周辉林, 郑灵辉, 莫仲念, 王玉皞, 陈良兵. 基于直接采样法和子空间优化法的多介质目标混合逆散射成像方法[J]. 电子与信息学报, 2017, 39(3): 758-762. doi: 10.11999/JEIT160534
引用本文: 周辉林, 郑灵辉, 莫仲念, 王玉皞, 陈良兵. 基于直接采样法和子空间优化法的多介质目标混合逆散射成像方法[J]. 电子与信息学报, 2017, 39(3): 758-762. doi: 10.11999/JEIT160534
ZHOU Huilin, ZHENG Linghui, MO Zhongnian, WANG Yuhao, CHEN Liangbing. DSM-SOM Based Hybrid Inverse Scattering Method for Multiple Dielectric Objects Reconstruction[J]. Journal of Electronics & Information Technology, 2017, 39(3): 758-762. doi: 10.11999/JEIT160534
Citation: ZHOU Huilin, ZHENG Linghui, MO Zhongnian, WANG Yuhao, CHEN Liangbing. DSM-SOM Based Hybrid Inverse Scattering Method for Multiple Dielectric Objects Reconstruction[J]. Journal of Electronics & Information Technology, 2017, 39(3): 758-762. doi: 10.11999/JEIT160534

基于直接采样法和子空间优化法的多介质目标混合逆散射成像方法

doi: 10.11999/JEIT160534
基金项目: 

国家自然科学基金(61561034, 61261010, 41505015),江西省自然科学基金(2015BAB207001),江西省科技支撑计划(20151BBE50090),江西省研究生创新专项基金(YC2016-S068)

DSM-SOM Based Hybrid Inverse Scattering Method for Multiple Dielectric Objects Reconstruction

Funds: 

The National Natural Science Foundation of China (61561034, 61261010, 41505015), Jiangxi Provincial Natural Science Foundation (2015BAB207001), The Projects in the Jiangxi Provincial Science Technology Pillar Program (20151BBE- 50090), Jiangxi Provincial Graduate Innovation Special Foundation (YC2016-S068)

  • 摘要: 该文提出一种结合定性与定量成像方法优势的混合电磁场逆散射成像方法,并将该方法应用于重构多介质目标的电性能参数的空间分布信息。该混合成像方法首先利用基于直接采样法(Direct Sampling Method, DSM)的定性方法快速重构目标的感兴趣区域(Region Of Interesting, ROI)、目标形状及目标个数的先验信息。在此基础上,利用基于子空间优化定量方法结合该先验信息迭代修正目标的几何形状信息,并重构目标的电性能参数的空间分布。基于菲涅尔实验室实测散射场数据表示,该方法与子空间优化法SOM(Subspace-based Optimization Method)定量成像精度相比拟的情况下,极大地降低了定量方法的计算复杂度和提高算法收敛速度。
  • SHAH P, KHANKHOJE U, and MOGHADDAM M. Inverse scattering using a joint L1-L2 based regularization[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1373-1384. doi: 10.1109/TAP.2016.2529641.
    RABBANI M, TAWAKONI A, and DEHMOLLAIAN M. A hybrid quantitative method for inverse scattering of multiple dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(3): 977-987. doi: 10.1109/TAP.2016. 2515124.
    CHEN X. Subspace-based optimization method for solving inverse-scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 42-49. doi: 10.1109/TGRS.2009.2025122.
    CUI Tiejun, AYDINER A, CHEN Siyuan, et al. Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 339-346. doi: 10.1109/36.905242.
    DONATO L D, BEVACQUA M T, CROCK L, et al. Inverse scattering via virtual experiments and contrast source regularization[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1669-1677. doi: 10.1109/TAP.2015. 2392124.
    CAPONE F and DARRIGRAND E. The linear sampling method for the inverse electromagnetic scattering problem for screens[C]. Society for Industrial and Applied Mathematics, 2010: 645-646.
    ITO K, JIN B, and ZHOU J. A direct sampling method to an inverse medium scattering problem[J]. Inverse Problems, 2012, 28(2): 25003-25013. doi: 10.1088/0266-5611/28/2/ 025003.
    XU K, ZHONG Y, SONG R, et al. Multiplicative-regularized FFT twofold subspace-based optimization method for inverse scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 841-850. doi: 10.1109/ TGRS.2014.2329032.
    BRIGNONE M, BOZZA G, RANDAZZO A, et al. A hybrid approach to 3D microwave imaging by using linear sampling and ACO[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(10): 3224-3232. doi: 10.1109/TAP. 2008.929504.
    DORN O and ELSEVIER D. Level set methods for inverse scattering[J]. Inverse Problems, 2006, 22(22): R67-R131. doi: 10.1088/0266-5611/22/4/R01.
    YE X, POLE L, OLIVIER G, et al. Multi-resolution subspace-based optimization method for solving three- dimensional inverse scattering problems[J]. Journal of the Optical Society of America A, 2015, 32(11): 2218-2226. doi: 10.1364/JOSAA.32.002218.
    SORIMACHI M and NISHIMURA S. Guest editors introduction: testing inversion algorithms against experimental data: inhomogeneous targets[J]. Inverse Problems, 2005, 21(6): S1-S3. doi: 10.1016/0168-0102(85) 90273.
    肖志涛, 史文静, 耿磊, 等. 基于相位信息和主成分分析的对称性检测方法[J]. 电子与信息学报, 2014, 36(9): 2041-2046. doi: 10.3724/SP.J.1146.2013.01598.
    XIAO Zhitao, SHI Wenjing, GENG Lei, et al. Symmetry detection based on phase information and principal component analysis[J]. Journal of Electronics Information Technology, 2014, 36(9): 2041-2046. doi: 10.3724/SP.J.1146. 2013.01598.
  • 加载中
计量
  • 文章访问数:  1582
  • HTML全文浏览量:  137
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 修回日期:  2016-10-11
  • 刊出日期:  2017-03-19

目录

    /

    返回文章
    返回