高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极大平面图的结构与着色理论 (4)-运算与Kempe等价类

许进

许进. 极大平面图的结构与着色理论 (4)-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483
引用本文: 许进. 极大平面图的结构与着色理论 (4)-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483
XU Jin. Theory on Structure and Coloring of Maximal Planar Graphs (4)-Operations and Kempe Equivalent Classes[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483
Citation: XU Jin. Theory on Structure and Coloring of Maximal Planar Graphs (4)-Operations and Kempe Equivalent Classes[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483

极大平面图的结构与着色理论 (4)-运算与Kempe等价类

doi: 10.11999/JEIT160483
基金项目: 

国家973计划项目(2013CB329600),国家自然科学基金(61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

Theory on Structure and Coloring of Maximal Planar Graphs (4)-Operations and Kempe Equivalent Classes

Funds: 

The National 973 Program of China (2013CB329600), The National Natural Science Foundation of China (61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

  • 摘要: 设G是一个k-色图,若G的所有k-着色是Kempe等价的,则称G为Kempe图。表征色数3的Kempe图特征是一尚待解决难题。该文对极大平面图的Kempe等价性进行了研究,其主要贡献是:(1)发现导致两个4-着色是Kempe等价的关键子图为2-色耳,故对2-色耳的特征进行了深入研究;(2)引入-特征图,清晰地刻画了一个图中所有4-着色之间的关联关系,并深入研究了-特征图的性质;(3)揭示了4-色非Kempe极大平面图的Kempe等价类可分为树型,圈型和循环圈型,并指出这3种类型可同时存在于一个极大平面图的4-着色集中;(4)研究了Kempe极大平面图特征,给出了该类图的多米诺递推构造法,以及两个Kempe极大平面图猜想。
  • JENSEN T R and TOFT B. Graph coloring problems[J]. Wiley-Interscience Series in Discrete Mathematics and Optimization, 1995, 113(2): 29-59. doi: 10.1002/ 9781118032497.ch2.
    DIAZ J, PETIT J, and SERNA M. A survey of graph layout problems[J]. ACM Computing Surveys, 2002, 34(3): 313-356. doi: 10.1145/568522.568523.
    BRODER A, KUMAR R, MAGHOUL F, et al. Graph structure in the web[J]. Computer Networks, 2000, 33(1/6): 309-320. doi: 10.1016/S1389-1286(00)00083-9.
    许进, 李泽鹏, 朱恩强. 极大平面图理论研究进展[J]. 计算机学报, 2015, 38(8): 1680-1704. doi: 10. 11897/SP.J.1016.2015. 01680.
    XU J, LI Z P, and ZHU E Q. Research progress on the theory of maximal planar graphs[J]. Chinese Journal of Computers, 2015, 38(8): 1680-1704. doi: 10.11897/SP.J.1016.2015. 01680.
    KEMPE A B. On the geographical problem of the four colors[J]. American Journal of Mathematics, 1879, 2(3): 193-200. doi: 10.2307/2369235.
    FISK S. Geometric coloring theory[J]. Advances in Mathematics, 1977, 24(3): 298-340. doi: 10.1016/0001- 8708(77)90061-5.
    MEYNIEL H. Les 5-colorations d'un graphe planaire Forment une classe de commutation unique[J]. Journal of Combinatorial Theory Series B, 1978, 24(3): 251-257. doi: 10.1016/0095-8956(78)90042-4.
    VERGNAS M L and MEYNIEL H. Kempe classes and the Hadwiger conjecture[J]. Journal of Combinatorial Theory Series B, 1981, 31(1): 95-104. doi: 10.1016/S0095- 8956(81)80014-7.
    MOHAR B. Kempe Equivalence of Colorings[M]. Graph Theory in Paris, Birkhuser Basel, 2006: 287-297. doi: 10.1007/978-3-7643-7400-6_22.
    FEGHALI C, JOHNSON M, and PAULUSMA D. Kempe equivalence of colourings of cubic graphs[J]. Electronic Notes in Discrete Mathematics, 2015, 49: 243-249. doi: 10.1016/j. endm.2015.06.034.
    CERECEDA L, HEUVEL J V D, and JOHNSON M. Connectedness of the graph of vertex-colourings[J]. Discrete Mathematics, 2008, 308(5/6): 913-919. doi: 10.1016/j.disc. 2007.07.028.
    MCDONALD J, MOHAR B, and SCHEIDE D. Kempe equivalence of edge-colorings in subcubic and subquartic graphs[J]. Journal of Graph Theory, 2012, 70(2): 226-239. doi: 10.1002/jgt.20613.
    BELCASTRO S M and HAAS R. Counting edge-Kempe- equivalence classes for 3-edge-colored cubic graphs[J]. Discrete Mathematics, 2014, 325(13): 77-84. doi: 10.1016/j. disc.2014.02.014.
    FIOL M A and VILALTELLA J. A simple and fast heuristic algorithm for edge-coloring of graphs[J]. AKCE International Journal of Graphs and Combinatorics, 2013, 10(3): 263-272.
    EFTHYMIOU C and SPIRAKIS P G. Random sampling of colourings of sparse random graphs with a constant number of colours[J]. Theoretical Computer Science, 2008, 407(1/3): 134-154. doi: 10.1016/j.tcs.2008.05.008.
    DYER M, FLAXMAN A D, FRIEZE A M, et al. Randomly coloring sparse random graphs with fewer colors than the maximum degree[J]. Random Structures and Algorithms, 2006, 29(4): 450-465. doi: 10.1002 /rsa.20129.
    HAYES T P and VIGODA E. A non-Markovian coupling for randomly sampling colorings[C]. 44th Annual Symposium on Foundations of Computer Science, 2003: 618-627. doi: 10.1109/SFCS.2003.1238234.
    LUCZAK T and VIGODA E. Torpid mixing of the Wang- Swendsen-Kotecky algorithm for sampling colorings[J]. Journal of Discrete Algorithms, 2005, 3(1): 92-100. doi: 10.1016/j.jda.2004.05.002.
    MORGENSTERN C A and SHAPIRO H D. Heuristics for rapidly four-coloring large planar graphs[J]. Algorithmica, 1991, 6(1): 869-891. doi: 10.1007/BF01759077.
    SIBLEY T and WAGON S. Rhombic penrose tilings can be 3-colored[J]. The American Mathematical Monthly, 2000, 107(3): 251-253. doi: 10.2307/2589317.
    VIGOD E. Improved bounds for sampling colorings[C]. 40th Annual Symposium on Foundations of Computer Science, New York, 1999: 51-59. doi: 10.1109/SFFCS.1999.814577.
    FRIEZE A and VIGODA E. A survey on the use of markov chains to randomly sample colourings[C]. In Combinatorics, Complexity, and Chance. Oxford Lecture Ser. Math. Appl. 34 53-71. Oxford Univ. Press, Oxford. MR2314561. doi: 10.1093/acprof:oso/9780198571278.003.0004.
    HAYES T P and VIGODA E. Coupling with the stationary distribution and improved sampling for colorings and independent sets[J]. The Annals of Applied Probability, 2006, 16(3): 1297-1318. doi: 10.1214/105051606000000330.
    BALASUBRAMANIAN R and SUBRAMANIAN C R. On sampling colorings of bipartite graphs[J]. Discrete Mathematics and Theoretical Computer Science Dmtcs, 2006, 8(1): 17-30. [25] 许进. 极大平面图的结构与着色理论(2): 多米诺构形与扩缩运算[J]. 电子与信息学报, 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224.
    XU J. Theory on structure and coloring of maximal planar graphs (2): Domino configurations and extending- contracting operations[J]. Journal of Electronics Information Technology, 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224.
    许进. 极大平面图的结构与着色理论(3): 纯树着色与唯一4-色平面图猜想[J]. 电子与信息学报, 2016, 38(6): 1328-1353. doi: 10.11999/JEIT160409.
    XU J. Theory on structure and coloring of maximal planar graphs (3): Purely Tree-colorable and Uniquely 4-colorable Maximal Planar Graph Conjectures[J]. Journal of Electronics Information Technology, 2016, 38(6): 1328-1353. doi: 10.11999/JEIT160409.
    BONDY J A and MURTY U S R. Graph Theory[M]. Springer, 2008: 6-58.
  • 加载中
计量
  • 文章访问数:  1508
  • HTML全文浏览量:  120
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-11
  • 修回日期:  2016-05-30
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回