高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于圆柱绕流直径压强差的二维风测量方法

刘成 赵湛 杜利东 方震

刘成, 赵湛, 杜利东, 方震. 基于圆柱绕流直径压强差的二维风测量方法[J]. 电子与信息学报, 2017, 39(3): 737-742. doi: 10.11999/JEIT160468
引用本文: 刘成, 赵湛, 杜利东, 方震. 基于圆柱绕流直径压强差的二维风测量方法[J]. 电子与信息学报, 2017, 39(3): 737-742. doi: 10.11999/JEIT160468
LIU Cheng, ZHAO Zhan, DU Lidong, FANG Zhen. Method of Measuring Two-dimensional Wind Based on Diametrical Pressure Differences Developed by Flow Around Cylinder[J]. Journal of Electronics & Information Technology, 2017, 39(3): 737-742. doi: 10.11999/JEIT160468
Citation: LIU Cheng, ZHAO Zhan, DU Lidong, FANG Zhen. Method of Measuring Two-dimensional Wind Based on Diametrical Pressure Differences Developed by Flow Around Cylinder[J]. Journal of Electronics & Information Technology, 2017, 39(3): 737-742. doi: 10.11999/JEIT160468

基于圆柱绕流直径压强差的二维风测量方法

doi: 10.11999/JEIT160468
基金项目: 

公益行业专项(GYHY201006044),国家自然科学基金(51305423)

Method of Measuring Two-dimensional Wind Based on Diametrical Pressure Differences Developed by Flow Around Cylinder

Funds: 

Special Fund for Public Welfare (GYHY- 201006044), The National Natural Science Foundation of China (51305423)

  • 摘要: 基于流量传感器的圆柱结构2维风传感器,其测量性能对地面风测量而言不够准确。由此,该文通过分析风洞实验数据,建立一种数学模型来描述圆柱绕流中直径两端压强差的分布,并根据该模型提出一种通过检测该直径压强差来计算风速风向的2维风测量方法。对风洞测试数据应用该方法,在2~40 m/s风速范围内,风速计算值误差不超过(0.2+0.03 V) m/s,风向计算值误差不超过5。相比使用流量传感器的圆柱结构2维风传感器,该方法提高了测量准确度。同时,该方法不需要转动部件,不受机械摩擦和惯性的制约,需要占用的空间小。
  • 孙学金, 王晓蕾, 李浩, 等. 大气探测学[M]. 北京: 气象出版社, 2009: 172-247.
    SUN Xuejin, WANG Xiaolei, LI Hao, et al. Atmospheric Observation[M]. Beijing: China Meteorological Press, 2009: 172247.
    BRUSCHI P, DEI M, and PIOTTO M. A low-power 2-D wind sensor based on integrated flow meters[J]. IEEE Sensors Journal, 2009, 9(12): 16881696. doi: 10.1109/JSEN.2009. 2030652.
    ZHU Yanqing, CHEN Bei, QIN Ming, et al. 2-D micromachined thermal wind sensorsA review[J]. IEEE Internet of Things Journal, 2014, 1(3): 216232. doi: 10.1109/ JIOT.2014.2319296.
    VERESHCHAGINA E, TIGGELAAR R M, SANDERS R G P, et al. Low power micro-calorimetric sensors for analysis of gaseous samples[J]. Sensors and Actuators B: Chemical, 2015, 206: 772787. doi: 10.1016/j.snb.2014.08.077.
    LIU Haobing, LIN Nay, PAN Shanshan, et al. High sensitivity, miniature, full 2-D anemometer based on MEMS hot-film sensors[J]. IEEE Sensors Journal, 2013, 13(5): 19141920. doi: 10.1109/JSEN.2012.2236014.
    KOWALSKI L, JIMENEZ V, DOMINGUEZ-PUMAR M, et al. Low pressure spherical thermal anemometer for space missions[C]. 2013 IEEE Sensors, Baltimore, Maryland, USA, 2013: 14. doi: 10.1109/ICSENS.2013.6688493.
    KOWALSKI L, ATIENZA M T, GORRETA S, et al. Spherical wind sensor for the atmosphere of Mars[J]. IEEE Sensors Journal, 2016, 16(7): 18871897. doi: 10.1109/JSEN. 2015.2509168.
    DONG Ziqiang, CHEN Jingjing, QIN Yukun, et al. Fabrication of a micromachined two-dimensional wind sensor by Au-Au wafer bonding technology[J]. Journal of Microelectromechanical Systems, 2012, 21(2): 467475. doi: 10.1109/JMEMS.2011.2179014.
    ZHU Yanqing, CHEN Bei, GAO Di, et al. A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process[J]. Microsystem Technologies, 2015, 22(1): 151162. doi: 10.1007/s00542-015-2423-9.
    GEORGIOU D P and KYPROS F M. Fabrication and calibration of a sub-miniature 5-hole probe with embedded pressure sensors for use in extremely confined and complex flow areas in turbomachinery research facilities[J]. Flow Measurement and Instrumentation, 2014, 39: 5463. doi: 10.1016/j.flowmeasinst.2014.07.005.
    PIOTTO M, DEI M, PENNELLI G, et al. A miniaturized 2D solid state anemometer based on thermal flow sensors[J]. Procedia Chemistry, 2009, 1(1): 14631466. doi: 10.1016/j. proche.2009.07.365.
    PIOTTO M, PENNELLI G, and BRUSCHI P. Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor[J]. Microelectronic Engineering, 2011, 88(8): 22142217. doi: 10.1016/j.mee.2010.11.009.
    张兆顺, 崔桂香. 流体力学[M]. 北京: 清华大学出版社, 1999: 167168.
    ZHANG Zhaoshun and CUI Guixiang. Hydromechanics[M]. Beijing: Tsinghua University Press, 1999: 167168.
    SCHLICHTING H. Boundary-Layer Theory[M]. 7th Edition, New York: McGraw-Hill, 1979: 1223.
    ZURELL Cory. Aerodynamics of a circular cylinder inclined to airflow and wind-induced vibrations of dry, inclined cables at high wind speeds[D]. [Ph.D. dissertation], University of Ottawa, 2004: 2225.
    CARE I and ARENAS M. On the impact of anemometer size on the velocity field in a closed wind tunnel[J]. Flow Measurement and Instrumentation, 2015, 44: 210. doi: 10.1016/j.flowmeasinst.2014.11.007.
    CHEN Wenli, LI Hui, and HU Hui. An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder[J]. Experiments in Fluids, 2014, 55(4): 14. doi: 10.1007/s00348-014-1707-7.
    LYSENKO D A, ERTESVG I S, and RIAN K E. Large- eddy simulation of the flow over a circular cylinder at Reynolds number 2104[J]. Flow, Turbulence and Combustion, 2014, 92(3): 673698. doi: 10.1007/s10494-013- 9509-1.
    GIACOMO P. Equation for the determination of the density of moist air (1981)[J]. Metrologia, 1982, 18(3): 3340. doi: 10.1088/0026-1394/18/3/011.
    LIU Cheng, DU Lidong, and ZHAO Zhan. A directional cylindrical anemometer with four sets of differential pressure sensors[J]. Review of Scientific Instruments, 2016, 87(3): 035105. doi: 10.1063/1.4943222.
  • 加载中
计量
  • 文章访问数:  1120
  • HTML全文浏览量:  100
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-09
  • 修回日期:  2016-09-23
  • 刊出日期:  2017-03-19

目录

    /

    返回文章
    返回