高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多模型贝努利粒子滤波机动目标跟踪算法

杨峰 张婉莹

杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467
引用本文: 杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467
YANG Feng, ZHANG Wanying. Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking[J]. Journal of Electronics & Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467
Citation: YANG Feng, ZHANG Wanying. Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking[J]. Journal of Electronics & Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467

一种多模型贝努利粒子滤波机动目标跟踪算法

doi: 10.11999/JEIT160467
基金项目: 

国家自然科学基金(61135001, 61374159, 61374023),西北工业大学研究生创意创新种子基金(Z2016149)

Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking

Funds: 

The National Natural Science Foundation of China (61135001, 61374159, 61374023), Seed Foundation of Innovation and Creation of Graduate Students in Northwestern Polytechnical University (Z2016149)

  • 摘要: 交互式多模型贝努利粒子滤波器(Interacting Multiple Model Bernoulli Particle Filter, IMMBPF)适用于杂波环境下的机动目标跟踪。但是IMMBPF将模型信息引入粒子采样过程中会导致用于逼近当前时刻真实状态与模型的粒子数减少,而且每次递推各模型间的粒子都要进行交互,存在计算量过大的缺点。为提升IMMBPF中单个采样粒子对于真实目标状态和模型逼近的有效性,该文提出一种改进的多模型贝努利粒子滤波器(Multiple Model Bernoulli Particle Filter, MMBPF)。预先选定每一个模型的粒子数,且模型间的粒子不需要进行交互,减少了计算负荷。模型概率由模型似然函数计算得到,在不改变模型的马尔科夫性质的条件下避免了小概率模型的粒子退化现象。仿真实验结果表明,所提出的MMBPF与IMMBPF相比,用较少的粒子数就可获得更优的跟踪性能。
  • RISTIC B, VO B T, VO B N, et al. A tutorial on Bernoulli filters: Theory, implementation and applications[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3406-3430. doi: 10.1109/TSP.2013.2257765.
    VO B T, VO B N, HOSEINNEZHAD, et al. Robust multi-Bernoulli filtering [J]. IEEE Selected Topics in Signal Processing, 2013, 7(3): 399-409. doi: 10.1109/JSTSP.2013. 2252325.
    PAPI F, KYOVTOROV V, GIULIANNO R, et al. Bernoulli filter for track-before-detect using MIMO radar[J]. IEEE Signal Processing Letters, 2014, 21(9): 1145-1149. doi: 10.1109/LSP.2014.2325566.
    VO B T, SEE C M, MA N, et al. Multi-sensor joint detection and tracking with the Bernoulli filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1385-1402. doi: 10.1109/TAES.2012.6178069.
    GRAMSTROM K, WILLETT P, and BARSHALOM Y. A Bernoulli filter approach to detection and estimation of hidden Markov models using cluttered observation sequences[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 2015: 3911-3915. doi: 10.1109/ICASSP.2015.7178704.
    BLOM H A P. An efficient filter for abruptly changing systems[C]. IEEE Proceedings of 23th Conference on Decision and Control, Las Vegas, NV, USA, 1984, Vol.23: 656-658. doi: 10.1109/CDC.1984.272089.
    MCGINNITY S and IRWIN G W. Multiple model bootstrap filter for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012. doi: 10.1109/7.869522.
    刘贵喜, 高恩克, 范春宇. 改进的交互式多模型粒子滤波跟踪算法[J]. 电子与信息学报, 2007, 29(12): 2810-2813.
    LIU Guixi, GAO Enke, and FAN Chunyu. Tracking algorithms based on improved interacting multiple model particle filter[J]. Journal of Electronics Information Technology, 2007, 29(12): 2810-2813.
    BOERS Y and DRIESSEN H. Interacting multiple model particle filter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(5): 344-349. doi: 10.1049/ip-rsn: 20030741.
    DRIESSEN H and BOERS Y. Efficient particle filter for jump Markov nonlinear systems[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5): 323-326. doi: 10.1049/ ip-rsn:20045075.
    YANG Wei, FU Yaowen, LONG Jianqian, et al. Random finite sets-based joint maneuvering target detection and tracking filter and its implementation[J]. IET Signal Processing, 2012, 6(7): 648-660. doi: 10.1049/iet-spr. 2011.0171.
    DUNNE D and KIRUBARAJAN T. Multiple model multi-Bernoulli filters for maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2679-2692. doi: 10.1109/TAES.2013.6621845.
    YANG Yanbo, ZOU Jie, YANG Feng, et al. An adaptive particle filter based on the mixing probability[C]. IEEE International Congress on Image and Signal Processing (CISP), Chongqing, China, 2012: 1480-1484. doi: 10.1109/ CSIP. 2012.6469724.
    鉴福升, 徐跃民, 阴泽杰. 改进的多模型粒子滤波机动目标跟踪算法[J]. 控制理论与应用, 2010, 27(8): 1012-1016.
    JIAN Fusheng, XU Yueming, and YIN Zejie. Enhanced multiple model particle filter for maneuvering target tracking[J]. Control Theory Application, 2010, 27(8): 1012-1016.
  • 加载中
计量
  • 文章访问数:  1365
  • HTML全文浏览量:  198
  • PDF下载量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-09
  • 修回日期:  2016-11-28
  • 刊出日期:  2017-03-19

目录

    /

    返回文章
    返回