高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种WiFi多信道聚合的高速同步回传方法

薛青 方旭明

薛青, 方旭明. 一种WiFi多信道聚合的高速同步回传方法[J]. 电子与信息学报, 2017, 39(2): 335-341. doi: 10.11999/JEIT160375
引用本文: 薛青, 方旭明. 一种WiFi多信道聚合的高速同步回传方法[J]. 电子与信息学报, 2017, 39(2): 335-341. doi: 10.11999/JEIT160375
XUE Qing, FANG Xuming. High-speed Synchronous Backhaul Method with Aggregation of Multiple WiFi Channels[J]. Journal of Electronics & Information Technology, 2017, 39(2): 335-341. doi: 10.11999/JEIT160375
Citation: XUE Qing, FANG Xuming. High-speed Synchronous Backhaul Method with Aggregation of Multiple WiFi Channels[J]. Journal of Electronics & Information Technology, 2017, 39(2): 335-341. doi: 10.11999/JEIT160375

一种WiFi多信道聚合的高速同步回传方法

doi: 10.11999/JEIT160375
基金项目: 

国家自然科学基金(61471303),欧盟 FP7 QUICK项目(PIRSES-GA-2013-612652)

High-speed Synchronous Backhaul Method with Aggregation of Multiple WiFi Channels

Funds: 

The National Natural Science Foundation of China (61471303), EU FP7 QUICK Project (PIRSES-GA-2013-612652)

  • 摘要: 为满足疯狂增长的数据业务需求,近年来蜂窝基站的部署越来越趋于小型化和密集化,这就对回传技术性能提出了更高的要求。该文将WiFi作为5G网络中的一种无线回传技术,提出一种基于WiFi多信道聚合的高速同步回传方案。现有WiFi协议(如IEEE 802.11n/ac)采用静态或动态信道绑定技术可将多个具有连续频谱的信道聚合为单一宽信道,从而提高网络容量。但是,静态绑定方式不够灵活,动态绑定方式在密集用户分布下也很难发挥其优势。该文则通过在单一网络节点上配置多射频实现非连续频谱的WiFi多信道聚合,其在扩展传输带宽,提升网络性能的同时,也可以有效克服802.11n/ac中信道绑定方式的弊端。方案主要包括3部分:多节点联合信道扫描、多信道同步收发控制及干扰检测。理论分析和仿真结果表明,所提非连续频谱的WiFi多信道聚合方案的回传性能优于802.11n/ac中连续频谱聚合方案,且多信道同步传输能有效抑制回传网络中的邻道干扰。最后,由搭建的原型验证系统证明了所提方案的可行性及有效性。
  • TIPMONGKOLSILP O, ZAGHLOUL S, and JUKAN A. The evolution of cellular backhaul technologies: Current issues and future trends[J]. IEEE Communications Surveys Tutorials, 2011, 13(1): 97-113. doi: 10.1109/SURV.2011. 040610.00039.
    IEEE. IEEE Std 802.11nTM-2009 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) SpecificationsAmendment 5: Enhancements for Higher Throughput[S]. New York, IEEE Inc., 2009.
    IEEE. IEEE P802.11acTM/D7.0-2013 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) SpecificationsAmendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz[S]. New York, IEEE Inc., 2013.
    PARK M. IEEE 802.11ac: Dynamic bandwidth channel access[C]. IEEE International Conference on Communications, Kyoto, Japan, 2011: 1-5.
    BUKHARI S H R, REHMANI M H, and SIRAJ S. A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks[J]. IEEE Communications Surveys Tutorials, 2016, 18(2): 924-948. doi: 10.1109/COMST.2015.2504408.
    HUANG P, YANG X, and XIAO L. Dynamic channel bonding: enabling flexible spectrum aggregation[J]. IEEE Transactions on Mobile Computing, 2016, 15(12): 3042-3056. doi: 10.1109/TMC. 2016.2524573.
    ZHANG W, KWAK K S, WANG H, et al. A practical MAC protocol supporting discontinuous channel bonding[C]. IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 2013: 510-511.
    WU D, YANG S H, BAO L, et al. Joint multi-radio multi- channel assignment, scheduling, and routing in wireless mesh networks[J]. Wireless Networks, 2014, 20(1): 11-24. doi: 10. 1007/s11276-013-0568-y.
    WONG H O and ANG A H. Channel allocation in multi- radio multi-channel wireless mesh networks: A categorized survey[J]. KSII Transactions on Internet Information Systems, 2015, 9(5): 1642-1661. doi: 10.3837/tiis.2015.05. 005.
    张劼, 钟朗, 李广军, 等. 基于节点优先级的无线Mesh网络资源分配[J]. 电子科技大学学报, 2016, 45(1): 54-59. doi: 10.3969/j.issn.1001-0548.2016.01.008.
    ZHANG Jie, ZHONG Lang, LI Guangjun, et al. Node- priority based resource allocation in wireless mesh networks [J]. Journal of University of Electronic Science and Technology of China, 2016, 45(1): 54-59. doi: 10.3969/j.issn. 1001-0548.2016.01.008.
    NACHTIGALL J, ZUBOW A, and REDLICH J P. The impact of adjacent channel interference in multi-radio systems using IEEE 802.11[C]. International Wireless Communications and Mobile Computing Conference, Crete Island, Greece, 2008: 874-881.
    ZUBOW A and SOMBRUTZKI R. Adjacent channel interference in IEEE 802.11n[C]. Wireless Communications and Networking Conference, Shanghai, China, 2012: 1163-1168.
    PERAHIA E and STACEY R. Next Generation Wireless LANs: Throughput, Robustness, and Reliability in 802.11n [M]. New York, Cambridge University Press, 2008: 46.
    CHOSOKABE Y, UWAI T, NAGAO Y, et al. A channel adaptive hybrid aggregation scheme for next generation wireless LAN[C]. Wireless Communications and Networking Conference Workshops, New Orleans, LA, USA, 2015: 153-158.
  • 加载中
计量
  • 文章访问数:  1813
  • HTML全文浏览量:  260
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-19
  • 修回日期:  2016-08-25
  • 刊出日期:  2017-02-19

目录

    /

    返回文章
    返回