BABY D, VIRTANEN T, GEMMEKE J F, et al. Coupled dictionaries for exemplar-based speech enhancement and automatic speech recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2015, 23(11): 1788-1799. doi: 10.1109/TASLP.2015.2450491.
|
ZHOU W L and HE Q H. Non-intrusive speech quality objective evaluation in high-noise environments[C]. IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, China, 2015: 50-54. doi: 10.1109/ChinaSIP.2015.7230360.
|
KODRASI I, MARQUARDT D, and DOCLO S. Curvature-based optimization of the trade-off parameter in the speech distortion weighted multichannel wiener filter[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, Australia, 2015: 315-319. doi: 10.1109/ICASSP.2015.7177982.
|
MARTIN R. Noise power spectral density estimation based on optimal smoothing and minimum statistics[J]. IEEE Transactions on Speech and Language Processing, 2001, 9(5): 504-512. doi: 10.1109/89.928915.
|
GERKMANN T. MMSE-optimal enhancement of complex speech coefficients with uncertain prior knowledge of the clean speech phase[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 4478-4482. doi: 10.1109/ICASSP.2014.6854449.
|
DAVID Y and KLEIJN W B. HMM-based gain modeling for enhancement of speech in noise[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(3): 882-892. 10.1109/TASL.2006.885256.
|
EVANA N, MASON J, LIU W, et al. An assessment on the fundamental limitations of spectral subtraction[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Toulous, France, 2006: 145-148. doi: 10.1109/ ICASSP.2006.1659978.
|
HILMAN F, KOJI I, and KOICHI S. Feature normalization based on non-extensive statistics for speech recognition[J]. Speech Communication, 2013, 55(5): 587-599. doi: 10.1016/ j.specom.2013.02.004.
|
HSIEH C T, HUANG P Y, CHEN Y H, et al. Speech enhancement based on sparse representation under color noisy environment[C]. International Symposium on Intelligent Signal Processing and Communication Systems, Nusa Dua, Indonesia, 2015: 134-138. doi: 10.1109/ISPACS. 2015.7432752.
|
孙林慧, 杨震. 基于数据驱动字典和稀疏表示的语音增强[J]. 信号处理, 2011, 27(12): 1793-1800.
|
SUN L H and YANG Z. Speech enhancement based on datadriven dictionary and sparse representation[J]. Signal Processing, 2011, 27(12): 1793-1800.
|
ZHAO Y P, ZHAO X H, and WANG B. A speech enhancement method employing sparse representation of power spectral density[J]. Journal of Information and Computational Science, 2013, 10(6): 1705-1714.
|
ZHAO N, XU X, and YANG Y. Sparse representations for speech enhancement[J]. Chinese Journal of Electronics, 2011, 19(2): 268-272.
|
SIGG C D, DIKK T, and BUHMANN J M. Speech enhancement using generative dictionary learning[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(6): 1698-1712. doi: 10.1109/TASL.2012.2187194.
|
ZHAO Y P and WANG B. A speech enhancement method based on sparse reconstruction of power spectral density [J]. Computers Electrical Engineering, 2014, 40(4): 1705-1714. doi: 10.1016/j.compeleceng.2013.12.007.
|
LOIZOU P C. Speech Enhancement: Theory and Practice [M]. Florida, US: CRC Press, 2013: 104-106.
|
RANGACHARI S and LOIZOU P. A noise estimation algorithm for highly nonstationary environments[J]. Speech Communication, 2006, 48(2): 220-231. doi: 10.1016/ j.specom.2006.08.005.
|
BEROUTI M, SCHWARTZ M, and MAKHOUL J. Enhancement of speech corrupted by acoustic noise[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Washington, US, 1979: 4478-4482. doi: 10.1109/ ICASSP.1979.1170788.
|
CHANG L H and WU J Y. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715. doi: 10.1109/ TIT.2014.2338314.
|
AHARON M and ELAD M. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006. Signal 881199.
|
ITU-T. P.862-2001. Perceptual evaluation of speech quality (PESQ): An objective method for end to end speech quality assessment of narrow-band telephone networks and speech codecs[S]. Geneva, ITU-T, 2001.
|