高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度卷积神经网络的场景自适应道路分割算法

王海 蔡英凤 贾允毅 陈龙 江浩斌

王海, 蔡英凤, 贾允毅, 陈龙, 江浩斌. 基于深度卷积神经网络的场景自适应道路分割算法[J]. 电子与信息学报, 2017, 39(2): 263-269. doi: 10.11999/JEIT160329
引用本文: 王海, 蔡英凤, 贾允毅, 陈龙, 江浩斌. 基于深度卷积神经网络的场景自适应道路分割算法[J]. 电子与信息学报, 2017, 39(2): 263-269. doi: 10.11999/JEIT160329
WANG Hai, CAI Yingfeng, JIA Yunyi, CHEN Long, JIANG Haobin. Scene Adaptive Road Segmentation Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2017, 39(2): 263-269. doi: 10.11999/JEIT160329
Citation: WANG Hai, CAI Yingfeng, JIA Yunyi, CHEN Long, JIANG Haobin. Scene Adaptive Road Segmentation Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2017, 39(2): 263-269. doi: 10.11999/JEIT160329

基于深度卷积神经网络的场景自适应道路分割算法

doi: 10.11999/JEIT160329
基金项目: 

国家自然科学基金(U1564201, 61601203, 61573171, 61403172),中国博士后基金(2014M561592, 2015T80511),江苏省重点研发计划(BE2016149),江苏省自然科学基金(BK20140555),江苏省六大人才高峰项目(2015-JXQC-012, 2014-DZXX-040)

Scene Adaptive Road Segmentation Algorithm Based on Deep Convolutional Neural Network

Funds: 

The National Natural Science Foundation of China (U1564201, 61601203, 61573171, 61403172), The China Postdoctoral Science Foundation (2014M561592, 2015T80511), The Key Research and Development Program of Jiangsu Province (BE2016149), The Natural Science Foundation of Jiangsu Province (BK20140555), The Six Talent Peaks Project of Jiangsu Province (2015-JXQC-012, 2014-DZXX-040)

  • 摘要: 现有基于机器学习的道路分割方法存在当训练样本和目标场景样本分布不匹配时检测效果下降显著的缺陷。针对该问题,该文提出一种基于深度卷积网络和自编码器的场景自适应道路分割算法。首先,采用较为经典的基于慢特征分析(SFA)和GentleBoost的方法,实现了带标签置信度样本的在线选取;其次,利用深度卷积神经网络(DCNN)深度结构的特征自动抽取能力,辅以特征自编码器对源-目标场景下特征相似度度量,提出了一种采用复合深度结构的场景自适应分类器模型并设计了训练方法。在KITTI测试库的测试结果表明,所提算法较现有非场景自适应道路分割算法具有较大的优越性,在检测率上平均提升约4.5%。
  • 余天洪, 王荣本, 顾柏园, 等. 基于机器视觉的智能车辆前方道路边界及车道标识识别方法综述[J]. 公路交通科技, 2006, 38(8): 139-142.
    YU Tianhong, WANG Rongben, GU Baiyuan, et al. Survey on the vision-based recognition methods of intelligent vehicle road boundaries and lane markings[J]. Journal of Highway and Transportation Research and Development, 2006, 38(8): 139-142.
    ZHOU H, KONG H, WEI L, et al. Efficient road detection and tracking for unmanned aerial vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 297-309. doi: 10.1109/TITS.2014.2331353.
    SHIN B S, XU Z, and KLETTE R. Visual lane analysis and higher-order tasks: a concise review[J]. Machine Vision and Applications, 2014, 25(6): 1519-1547. doi: 10.1007/s00138- 014-0611-8.
    HILLEL A B, LERNER R, LEVI D, et al. Recent progress in road and lane detection: a survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745. doi: 10.1007/s00138-011- 0404-2.
    PAZ L M, PINIES P, and NEWMAN P. A variational approach to online road and path segmentation with monocular vision[C]. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, 2015: 1633-1639. doi: 10.1109/ICRA.2015.7139407.
    PASSANI M, YEBES J J, and BERGASA L M. Fast pixelwise road inference based on Uniformly Reweighted Belief Propagation[C]. 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 2015: 519-524. doi: 10.1109/ IVS.2015.7225737.
    LADICKY L, STURGESS P, RUSSELL C, et al. Joint optimization for object class segmentation and dense stereo reconstruction[J]. International Journal of Computer Vision, 2012, 100(2): 122-133. doi: 10.1007/s11263-011-0489-0.
    STURGESS P, ALAHARI K, LADICKY L, et al. Combining appearance and structure from motion features for road scene understanding[C]. BMVC 2012-23rd British Machine Vision Conference, Guildford, UK, 2012: 1-10.
    KUHNL T, KUMMERT F, and FFITACH J. Monocular road segmentation using slow feature analysis[C]. 2011 IEEE Conference on Intelligent Vehicles Symposium (IV), Baden- Baden, Germany, 2011: 800-806. doi: 10.1109/IVS.2011. 5940416.
    肖良, 戴斌, 吴涛, 等. 基于字典学习与稀疏表示的非结构化道路分割方法[J]. 吉林大学学报(工学版), 2013, 43(S1): 384-388.
    XIAO Liang, DAI bin, WU Tao, et al. Unstructured road segmentation method based on dictionary learning and sparse representation[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(S1): 384-388.
    李骏扬, 金立左, 费树岷, 等. 基于多尺度特征表示的城市道路检测[J]. 电子与信息学报, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    ALVAREZ J M, LECUN Y, GEVERS T, et al. Semantic road segmentation via multi-scale ensembles of learned features[C]. 2012 Workshops and Demonstrations Computer Vision of ECCV, Firenze, Italy, 2012: 586-595. doi: 10.1007/978-3-642- 33868-7_58.
    WISKOTT L and SEJNOWAKI T J. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computation, 2002, 14(4): 715-770. doi: 10.1162/089976602317318938.
    KRIZHEVAKY A, SUTAKEVER I, and HINTON G E.
    Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems. South Lake Tahoe, Nevada, USA, 2012: 1097-1105.
    BROSTOW G J, FAUQUEUR J, and CIPOLLA R. Semantic object classes in video: A high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2): 88-97. doi: 10.1016/j.patrec.2008.04.005.
    GEIGER A, LENZ P, and URTASUN R. Are we ready for autonomous driving? The kitti vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012: 3354-3361. doi: 10.1109/CVPR.2012.6248074.
    LVAREZ J M and LOPEZ A M. Road detection based on illuminant invariance[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 184-193. doi: 10.1109/ TITS.2010.2076349.
  • 加载中
计量
  • 文章访问数:  2078
  • HTML全文浏览量:  262
  • PDF下载量:  942
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-08-22
  • 刊出日期:  2017-02-19

目录

    /

    返回文章
    返回