高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进BRISK的图像拼接算法

董强 刘晶红 王超 周前飞

董强, 刘晶红, 王超, 周前飞. 基于改进BRISK的图像拼接算法[J]. 电子与信息学报, 2017, 39(2): 444-450. doi: 10.11999/JEIT160324
引用本文: 董强, 刘晶红, 王超, 周前飞. 基于改进BRISK的图像拼接算法[J]. 电子与信息学报, 2017, 39(2): 444-450. doi: 10.11999/JEIT160324
DONG Qiang, LIU Jinghong, WANG Chao, ZHOU Qianfei. Image Mosaic Algorithm Based on Improved BRISK[J]. Journal of Electronics & Information Technology, 2017, 39(2): 444-450. doi: 10.11999/JEIT160324
Citation: DONG Qiang, LIU Jinghong, WANG Chao, ZHOU Qianfei. Image Mosaic Algorithm Based on Improved BRISK[J]. Journal of Electronics & Information Technology, 2017, 39(2): 444-450. doi: 10.11999/JEIT160324

基于改进BRISK的图像拼接算法

doi: 10.11999/JEIT160324
基金项目: 

吉林省重大科技攻关项目(11ZDGG001),国家林业公益性行业科研专项(201204515)

Image Mosaic Algorithm Based on Improved BRISK

Funds: 

The Key Science and Technology Project of Jilin Province (11ZDGG001), The Forestry Industry Scientific Research for National Public Welfare Projects (201204515)

  • 摘要: 为了获得精准的航空拼接图像,更好地解决图像拼接中经常出现的尺度变化、角度旋转、光照差异以及传统的BRISK(Binary Robust Invariant Scalable Keypoints)算法匹配正确率较低,图像拼接精度低等问题,该文提出一种全新的基于有向线段的BRISK特征的图像拼接模型。首先,使用BRISK算法进行图像匹配,得到粗匹配点对,再构造有向线段及其BRISK特征进行邻近线段匹配,通过概率统计模型进行特征点的精匹配,最后进行加权融合和亮度均衡化进行图像融合完成图像拼接。实验结果表明,该文算法针对图像的光照条件不同、角度旋转、分辨率低、尺度变化等均有良好的鲁棒性和稳定性,该文算法是一种耗时短、精确度高、拼接效果良好的图像拼接方法。
  • GHOSH D and KAABOUCH N. A survey on image mosaicing techniques[J]. Journal of Visual Communication Image Representation, 2015, 34(C): 1-11. doi: org/10.1016/ j.jvcir.2015.10.014.
    张宝龙, 李洪蕊, 李丹, 等. 一种针对车载全景系统的图像拼接算法的仿真[J]. 电子与信息学报, 2015, 37(5): 1149-1153. doi: 10.11999/JEIT141185.
    ZHANG Baolong, LI Hongrui, LI Dan, et al. A simulation of image mosaic algorithm based on vehicle panorama system[J]. Journal of Electronics Information Technology, 2015, 37(5): 1149-1153. doi: 10.11999/JEIT141185.
    XIE X, XU Y, LIU Q, et al. A study on fast SIFT image mosaic algorithm based on compressed sensing and wavelet transform[J]. Journal of Ambient Intelligence Humanized Computing, 2015, 6(6): 835-843. doi: org/10.1007/s12652- 015-0319-2.
    余先川, 吕中华, 胡丹. 遥感图像配准技术综述[J]. 光学精密工程, 2013, 21(11): 2960-2972. doi: 10.3788/OPE.20132111. 2960.
    YU Xianchuan, L Zhonghua, and HU Dan. Review of remote sensing image registration technique[J]. Optics and Precision Engineering, 2013, 21(11): 2960-2972. doi: 10.3788/ OPE.20132111.2960.
    AGHAJANI K, YOUSEFPOUR R, SHIRPOUR M, et al. Intensity based image registration by minimizing the complexity of weighted subtraction under illumination changes[J]. Biomedical Signal Processing Control, 2016, 25: 35-45. doi: org/10.1016/j.bspc.2015.10.009.
    赵春阳, 赵怀慈. 多模态鲁棒的局部特征描述符[J]. 光学精密工程, 2015, 23(5): 1474-1483. doi: 10.3788/OPE.20152305. 1474.
    ZHAO Chunyan and ZHAO Huaici. Multimodality robust local feature descriptors[J]. Optics and Precision Engineering, 2015, 23(5): 1474-1483. doi: 10.3788/OPE.20152305.1474.
    颜雪军, 赵春霞, 袁夏. 一种鲁棒的基于图像对比度的局部特征描述方法[J]. 电子与信息学报, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.
    YAN Xuejun, ZHAO Chunxia, and YUAN Xia. A robust local feature descriptor based on image contrast[J]. Journal of Electronics Information Technology, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.
    WANG Weixing, CAO Ting, LIU Sheng, et al. Remote sensing image automatic registration on multi-scale harris- laplacian[J]. Journal of the Indian Socity of Remote Sensing, 2015, 43(3): 501-511. doi: org/10.1007/s12524-014-0432-2.
    LOWE D G. Object recognition from local scaleinvariant features[C]. Proceedings of the 7th International Conference on Computer Vision, Corfu, Greece, ICCV, 1999, 2: 1150-1157.
    LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: org/10.1023/B:VISI.0000029664.99615.94.
    CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: Binary Robust Independent Elementary Features[C]. European Conference on Computer Vision, Springer Berlin Heidelberg, Germany, 2010: 778-792. doi: org/10.1007/ 978-3-642- 15561-1_56.
    LEUTENEGGER S, CHLI M, and SIEGWART R Y. BRISK: Binary Robust Invariant Scalable Keypoints[C]. International Conference on Compater Vision, Barcelona, Spain, 2011: 2548-2555. doi: org/10.1109/ICCV.2011.6126542.
    KASHIF M, DESERNO T M, HAAK D, et al. Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? A general question answered for bone age assessment[J]. Computers in Biology and Medicine, 2015, 68: 67-75. doi: org/10.1016/j.compbiomed.2015.11.006.
    ZHU Jun and REN Mingwu. Image mosaic method based on SIFT features of line segment[J]. Computational and Mathematical Methods in Medicine, 2014, 2014(6): 926312. doi: org/10.1155/2014/926312.
    ZHAO Chunyang, ZHAO Huaici, L? Jinfeng, et al. Multimodal image matching based on multimodality robust line segment descriptor[J]. Neurocomputing, 2016(177): 290-303. doi: org/10.1016/j.neucom.2015.11.025.
    黄立勤, 陈财淦. 全景图拼接中图像融合算法的研究[J]. 电子与信息学报, 2014, 36(6): 1292-1298. doi: 10.3724/SP.J.1146. 2013.01220.
    HUANG Liqin and CHEN Caigan. Study on image fusion algorithm of panoramic image stitching[J]. Journal of Electronics Information Technology, 2014, 36(6): 1292-1298. doi: 10.3724/SP.J.1146.2013.01220.
  • 加载中
计量
  • 文章访问数:  1596
  • HTML全文浏览量:  228
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-10-11
  • 刊出日期:  2017-02-19

目录

    /

    返回文章
    返回