Quantum Bits Phase Based Representation and Application for Color Images
-
摘要: 为解决量子计算机上彩色图像的描述及加密问题,该文提出一种基于量子比特相位旋转的新方法。首先通过将像素灰度值映射为量子比特的相位,将彩色图像描述成一个量子叠加态,其中基态描述像素的位置,而对应的概率幅即为该像素的灰度值。然后基于量子比特的相位旋转,设计了一些简单的图像处理方法。最后提出了一种新的彩色图像加密算法,该算法包括像素位置的置乱和量子比特的旋转两个过程。所提方法可在将来的量子计算机上执行。经典计算机上的仿真结果验证了方法的有效性。Abstract: To address the problem of the description and encryption of color images on the quantum computer, a new method based on the phase rotation of qubit is proposed. Firstly, the color image is described as a quantum superposition state by mapping the pixel gray value to the phase of the qubit, where the ground state denotes the position of the pixel, and the corresponding probability amplitude denotes the gray value of the pixel. Then, based on the phase rotation of the qubit, some simple image processing methods are designed. Finally, a new color image encryption algorithm is proposed, which consists of two processes: the scrambling of the pixel position and the rotation of the qubits. The proposed method can be run on quantum computers in the future. The simulation results on the classic computer show that the method is effective.
-
HOI-KWONG L. Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity[J]. Physical Review A, 2000, 62(1): 012313. doi: 10.1103/PhysRevA.62.012313. BEACH G, LOMONT C, and COHEN C. Quantum Image Processing (QuIP)[C]. Proceedings of the Thirty-second Applied Imagery Pattern Recognition Workshop, Washington, D.C., USA, 2003: 39-44. CARAIMAN S and MANTA V. Image processing using quantum computing[C]. Proceedings of the Sixteenth International Conference on System Theory, Control and Computing, Washington, D.C., USA, 2012: 1-6. VENEGAS-ANDRACA S E and BALL J L. Processing images in entangled quantum systems[J]. Quantum Information Processing, 2010, 9(1): 1-11. VENEGAS-ANDRACA S E and BOSE S. Storing, processing and retrieving an image using quantum mechanics [C]. Proceedings of the SPIE Quantum Information and Computation, Washington, D.C., USA, 2003: 137-147. LE P Q, DONG Fangyan, and HIROTA K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations[J]. Quantum Information Processing, 2011, 10(1): 63-84. ZHANG Yi, LU Kai, GAO Yinghui, et al. NEQR: A novel enhanced quantum representation of digital images[J]. Quantum Information Processing, 2013, 12(8): 2833-2860. ZHANG Yi, LU Kai, GAO Yinghui, et al. A novel quantum representation for log polar images[J]. Quantum Information Processing, 2013, 12(9): 3103-3126. HU Benqiong, HUANG Xudong, ZHOU Rigui, et al. A theoretical framework for quantum image representation and data loading scheme[J]. Science China Information Sciences, 2014, 57(3): 032108. LI Haisheng, ZHU Qingxin, ZHOU Rigui, et al. Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases[J]. Information Sciences, 2014, 273(3): 212232. ILIYASU A M, LE P Q, DONG Fangyan, et al. Watermarking and authentication of quantum images based on restricted geometric transformations[J]. Information Sciences, 2012, 186(1): 126-149. YANG Yuguang, JIA Xin, XU Peng, et al. Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform[J]. Quantum Information Processing, 2013, 12(8): 2765-2769. YANG Yuguang, XU Peng, TIAN Ju, et al. Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform[J]. Quantum Information Processing, 2014, 13(9): 1931-1936. YANG Yuguang, XIA Juan, JIA Xin, et al. Novel image encryption/decryption based on quantum Fourier transform and double phase encoding[J]. Quantum Information Processing, 2013, 12(11): 3477-3493. YANG Yuguang, JIA Xin, SUN Sijia, et al. Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding[J]. Information Sciences, 2014, 277(1): 445-457. ZHOU Rigui, WU Qian, ZHANG Manqun, et al. Quantum image encryption and decryption algorithms based on quantum image geometric transformations[J]. International Journal of Theoretical Physics, 2013, 52(6): 1802-1817. 期刊类型引用(23)
1. 胡城,蔡延光,黄嘉铖,曾庆丰. 蚁狮优化算法研究综述. 自动化与信息工程. 2024(03): 1-10+15 . 百度学术
2. 陈伟,杨盘隆,吴宣够. 改进蚁狮优化算法及其工程应用. 传感技术学报. 2023(04): 565-574 . 百度学术
3. 郭家虎,时曼玉. 自适应可调节边界的蚁狮优化算法. 安徽理工大学学报(自然科学版). 2023(04): 1-9+18 . 百度学术
4. 丁敏,夏兴宇,邹永杰,张乐,刘正堂. 基于改进蝴蝶优化算法的无人机3-D航迹规划方法. 南京航空航天大学学报. 2023(05): 851-858 . 百度学术
5. 王博文,王培,徐鲁豫. 基于紧凑蚁狮算法的三维路径规划研究. 微电子学与计算机. 2023(08): 19-27 . 百度学术
6. 韩统,汤安迪,周欢,徐登武,谢磊. 基于LASSA算法的多无人机协同航迹规划方法. 系统工程与电子技术. 2022(01): 233-241 . 百度学术
7. 李彦苍,吴悦. 基于高斯变异的蚁狮算法及其在组合优化中的应用. 中国科技论文. 2022(03): 295-304 . 百度学术
8. 张浩,覃涛,徐凌桦,王霄,杨靖. 改进多目标蚁狮算法的WSNs节点部署策略. 西安电子科技大学学报. 2022(05): 47-59 . 百度学术
9. 来磊,吴德伟,邹鲲,韩昆,李海林. 基于多准则交互膜进化算法的UAV三维航迹规划. 系统工程与电子技术. 2021(01): 138-146 . 百度学术
10. 马凯强,任利锋,曾喆,万剑华. 顾及恶劣海况的船舶救援路径规划. 海洋科学. 2021(05): 39-46 . 百度学术
11. 来磊,邹鲲,吴德伟,李保中. 交互策略改进MOFA进化的多UAV协同航迹规划. 系统工程与电子技术. 2021(08): 2282-2289 . 百度学术
12. 王沙沙,张则强,刘俊琦,陈凤. 多路径交互环形过道布置问题建模及改进蚁狮算法优化. 计算机集成制造系统. 2021(08): 2237-2247 . 百度学术
13. 靳江锋,刘旭. 联合多核FCM和改进GOA的多无人机协同侦查航迹规划. 兵器装备工程学报. 2021(11): 181-188 . 百度学术
14. 刘景森,霍宇,李煜. 优选策略的自适应蚁狮优化算法. 模式识别与人工智能. 2020(02): 121-132 . 百度学术
15. 李庆华,尤越,沐雅琪,张钊,冯超. 一种针对大型凹型障碍物的组合导航算法. 电子与信息学报. 2020(04): 917-923 . 本站查看
16. 李靖,杨帆. 基于改进灰狼优化算法的区域监测机器人路径规划. 科学技术与工程. 2020(15): 6122-6129 . 百度学术
17. 孟德智,葛斌. 基于蜂窝分区的蚁狮优化自适应路由算法. 金陵科技学院学报. 2020(02): 17-23 . 百度学术
18. 王茜,何庆,林杰,杨荣莹. 精英反向学习带扰动因子的混沌蚁狮算法. 智能计算机与应用. 2020(08): 51-57 . 百度学术
19. 杨帆,方玺,高飞,谢良. 面向三维陷阱空间的改进RRT算法航迹规划. 武汉理工大学学报. 2020(10): 98-106 . 百度学术
20. 黄长强. 未来空战过程智能化关键技术研究. 航空兵器. 2019(01): 11-19 . 百度学术
21. 徐钦帅,何庆,魏康园. 改进蚁狮算法的无线传感器网络覆盖优化. 传感技术学报. 2019(02): 266-275 . 百度学术
22. ZHANG Zhenxing,YANG Rennong,LI Huanyu,FANG Yuhuan,HUANG Zhenyu,ZHANG Ying. Antlion optimizer algorithm based on chaos search and its application. Journal of Systems Engineering and Electronics. 2019(02): 352-365 . 必应学术
23. 边莉,何辉,杨彦方,刘文静. 基于改进型蚁狮算法的PID控制器参数优化. 吉林大学学报(信息科学版). 2019(03): 292-298 . 百度学术
其他类型引用(23)
-
计量
- 文章访问数: 1277
- HTML全文浏览量: 118
- PDF下载量: 290
- 被引次数: 46