何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327-336.
|
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336.
|
DING S, JIA H, ZHANG L, et al. Research of semi-supervised spectral clustering algorithm based on pairwise constraints[J]. Neural Computing and Applications, 2014, 24(1): 211-219. doi: 10.1007/s00521-012-1207-8.
|
NG A Y, JORDAN M I, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. Neural Information Processing Systems: Natural and Synthetic, Vancouver, Canada, 2001: 849-856.
|
FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the Nystrom method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225. doi: 10.1109/TPAMI.2004.1262185.
|
LI M, KWOK J T, and LU B L. Making large-scale Nystrm approximation possible[C]. Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010: 631-638.
|
LI M, BI W, KWORK J T, et al. Large-scale Nystrm kernel matrix approximation using randomized SVD[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(1): 152-164. doi: 10.1109/TNNLS.2014.2359798.
|
丁世飞, 贾洪杰, 史忠植. 基于自适应Nystrm 采样的大数据谱聚类算法[J]. 软件学报, 2014, 25(9): 2037-2049. doi: 10.13328/j.cnki.jos.004643.
|
DING Shifei, JIA Hongjie, and SHI Zhongzhi. Spectral clustering algorithm based on adaptive Nystrm sampling for big data analysis[J]. Journal of Software, 2014, 25(9): 2037-2049. doi: 10.13328/j.cnki.jos.004643.
|
YAN D, HUANG L, and JORDAN M I. Fast approximate spectral clustering[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009: 907-916. doi: 10.1145/1557019.1557118.
|
CHEN X and CAI D. Large scale spectral clustering with landmark-based representation[C]. Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2011: 313-318.
|
CAI D and CHEN X. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE Transactions on Cybernetics, 2015, 45(8): 1669-1680. doi: 10.1109/TCYB. 2014.2358564.
|
BOUTSIDIS C, ZOUZIAS A, MAHONEY M W, et al. Randomized dimensionality reduction for-means clustering[J]. IEEE Transactions on Information Theory, 2015, 61(2): 1045-1062. doi: 10.1109/TIT.2014.2375327.
|
COHEN M, ELDER S, MUSCO C, et al. Dimensionality reduction for k-means clustering and low rank approximation[C]. Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, Portland, OR, USA, 2015: 163-172. doi: 10.1145/2746539.2746569.
|
KHOA N L D and CHAWLA S. A scalable approach to spectral clustering with SDD solvers[J]. Journal of Intelligent Information Systems, 2015, 44(2): 289-308. doi: 10.1007/ s10844-013-0285-0.
|
FRIEZE A, KANNAN R, and VEMPALA S. Fast Monte-Carlo algorithms for finding low-rank approximations[C]. Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA, 1998: 370-378. doi: 10.1109/SFCS. 1998.743487.
|
DRINEAS P, MAHONEY M W, and MUTHUKRISHNAN S. Sampling algorithms for l2 regression and applications[C]. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, Miami, Florida, USA, 2006: 1127-1136.
|
DRINES P, MAHONEY M W, and MUTHUKRISHNAN S. Subspace sampling and relative-error matrix approximation: Column-based methods[C]. 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems and 10th International Workshop on Randomization and Computation, Barcelona, Spain, 2006: 316-326. doi: 10.1007/11830924_30.
|
BOUTSIDIS C, DRINEAS P, and MAGDON-ISMAIL M. Near-optimal column-based matrix reconstruction [J]. SIAM Journal on Computing, 2014, 43(2): 687-717. doi: 10.1137/12086755X.
|
HALKO N, MARTINSSON P G, and TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[J]. SIAM Review, 2011, 53(2): 217-288. doi: 10.1137/090771806.
|
SARLOIS T. Improved approximation algorithms for large matrices via random projections[C]. Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, California, USA, 2006: 143-152. doi: 10.1109/FOCS.2006.37.
|
CHEN W Y, SONG Y, BAI H, et al. Parallel spectral clustering in distributed systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 568-586. doi: 10.1109/TPAMI.2010.88.
|
AFAHAD A, ALSHATRI N, TARI Z, et al. A survey of clustering algorithms for big data: Taxonomy and empirical analysis[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 267-279. doi: 10.1109/TETC. 2014.2330519.
|
STREHL A and GHOSH J. Cluster ensemblesA knowledge reuse framework for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003, 3: 583-617. doi: 10.1162/153244303321897735.
|