高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于独立向量分析的脑电信号中肌电伪迹的去除方法

陈强 陈勋 余凤琼

陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209
引用本文: 陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209
CHEN Qiang, CHEN Xun, YU Fengqiong. Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209
Citation: CHEN Qiang, CHEN Xun, YU Fengqiong. Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209

基于独立向量分析的脑电信号中肌电伪迹的去除方法

doi: 10.11999/JEIT160209
基金项目: 

国家自然科学基金(61501164, 81571760)

Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis

Funds: 

The National Natural Science Foundation of China (61501164, 81571760)

  • 摘要: 脑电数据经常被各种电生理信号伪迹所污染。在常见伪迹中,肌电伪迹特别难以去除。文献中最常用的方法包括诸如独立分量分析(Independent Component Analysis, ICA)和典型相关分析(Canonical Correlation Analysis, CCA)等盲源分离技术。该文首次提出一种基于独立向量分析(Independent Vector Analysis, IVA)的新方法,用以去除脑电中的肌电伪迹。IVA同时使用高阶统计量和二阶统计量,因此该方法能够充分利用肌电伪迹的非高斯性和弱相关性,兼具ICA方法和CCA方法的优势。实验表明,使用IVA方法可以在保留脑电成份的同时极大抑制肌电伪迹,效果显著优于ICA法和CCA法。
  • URRESTARAZU E, IRIARTE J, ALEGRE M, et al. Independent component analysis removing artifacts in ictal recordings[J]. Epilepsia, 2004, 45(9) 1071-1078. doi: 10.1111/ j.0013-9580.2004.12104.x.
    MCMENAMIN B W, SHACKMAN A J, GREISCHAR L L, et al. Electromyogenic artifacts and electroencephalographic inferences revisited[J]. Neuroimage, 2011, 54(1): 4-9. doi: 10.1016/j.neuroimage.2010.07.057.
    闫铮, 高小榕, 应俊. 基于认知功能连接的信息流增益计算方法及应用[J]. 电子与信息学报, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    YAN Z, GAO X R, and YING J. The flow gain methods and applications based on cognition functional connectivity[J]. Journal of Electronics Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314-318.
    L J, XIE S L, and ZHANG J L. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics Information Technology, 2009, 31(2): 314-318.
    吴明权, 李海峰, 马琳. 单通道脑电信号中眼电干扰的自动分离方法[J]. 电子与信息学报, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    WU M Q, LI H F, and MA L. Automatic electrooculogram separation method for single channel electroencephalogram signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    DE CLERCQ W, VERGULT A, VANRUMSTE B, et al. Canonical analysis applied to remove muscle artifacts from the electroencephalogram[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2583-2587. doi: 10. 1109/TBME.2006.879459.
    ALBERA L, KACHENOURA A, COMON P, et al. ICA- based EEG denoising: a comparative analysis of fifteen methods[J]. Bulletin of the Polish Academy of Sciences- Technical Sciences, 2012, 60(3): 407-418. doi: 10.2478/ v10175-012-0052-3.
    URIGUEN J A and GARCIA-ZAPIRAIN B. EEG artifact removal state-of-the-art and guidelines[J]. Journal of Neural Engineering, 2015, 12(3): 031001. doi: 10.1088/1741-2560 /12/3/031001.
    WINKER I, BRANDL S, HORN F, et al. Robust artifactual independent component classification for BCI practitioners [J]. Journal of Neural Engineering, 2014, 11(3): 035013. doi: 10.1088/1741-2560/11/3/035013.
    SHACKMAN A J, MCMENAMIN B W, Slagter H A, et al. Electromyogenic artifacts and electroencephalographic inferences[J]. Brain Topography, 2009, 22(1): 7-12. doi: 10.1007/s10548-009-0079-4.
    NAM H, YIM T G, HAN S K, et al. Independent component analysis of ictal EEG in medial temporal lobe epilepsy[J]. Epilepsia, 2002, 43(2): 160-164. doi: 10.1046/j.1528-1157. 2002.23501.x.
    GAO J F, ZHENG C X, and WANG P. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis[J]. Clinical EEG and Neuroscience, 2010, 41(1): 53-59. doi: 10.1177/155005941 004100111.
    MOWLA M R, NG S C, ZILANY M S A, et al. Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising[J]. Biomedical Signal Processing and Control, 2015, 22: 111-118. doi: 10.1016/j.bspc.2015.06.009.
    VERGULT A, DE CLERCQ W, PALMINI A, et al. Improving the interpretation of ictal scalp EEG: BSSCCA algorithm for muscle artifact removal[J]. Epilepsia, 2007, 48(5): 950-958. doi: 10.1111/j.1528-1167.2007.01031.x.
    VOS D M, RIES S, VANDEPERREN K, et al. Removal of muscle artifacts from EEG recordings of spoken language production[J]. Neuroinformatics, 2010, 8(2): 135-150. doi: 10.1007/s12021-010-9071-0.
    CHEN X, LIU A P, PENG H, et al. A preliminary study of muscular artifacts cancellation in single-channel EEG[J]. Sensors, 14(10): 18370-18389. doi: 10.3390/s141018370.
    ANDERSON M, ADALI T, and LI X L. Joint blind source separation with multivariate Gaussian model: Algorithms and performance analysis[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1672-1683. doi: 10.1109/TSP.2011. 2181836.
    ANDERSON M, FU G S, PHLYPO R, et al. Independent vector analysis: Identification conditions and performance bounds[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4399-4410. doi: 10.1109/TSP.2014.2333554.
    BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second order statistics[J]. IEEE Transacations on Signal Processing, 1997, 45(2): 434-444. doi: 10.1109/78.554307.
    CARDOSO J F. High-order contrasts for independent component analysis[J]. Neural Computation, 1999, 11(1): 157-192. doi: 10.1162/089976699300016863.
    HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28: 321-377. doi: 10.2307/2333955.
    LIN Z L, ZHANG C S, WU W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614. doi: 10.1109/TBME.2006.886577.
    GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. doi: 10.1161/01.CIR. 101.23.e215.
  • 加载中
计量
  • 文章访问数:  1845
  • HTML全文浏览量:  215
  • PDF下载量:  853
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 修回日期:  2016-07-18
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回