高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双广义高斯模型和多尺度融合的纹理图像检索方法

杨娟 李永福 汪荣贵 薛丽霞 张清杨

杨娟, 李永福, 汪荣贵, 薛丽霞, 张清杨. 基于双广义高斯模型和多尺度融合的纹理图像检索方法[J]. 电子与信息学报, 2016, 38(11): 2856-2863. doi: 10.11999/JEIT160181
引用本文: 杨娟, 李永福, 汪荣贵, 薛丽霞, 张清杨. 基于双广义高斯模型和多尺度融合的纹理图像检索方法[J]. 电子与信息学报, 2016, 38(11): 2856-2863. doi: 10.11999/JEIT160181
YANG Juan, LI Yongfu, WANG Ronggui, XUE Lixia, ZHANG Qingyang. Texture Image Retrieval Method Based on Dual-generalized Gaussian Model and Multi-scale Fusion[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2856-2863. doi: 10.11999/JEIT160181
Citation: YANG Juan, LI Yongfu, WANG Ronggui, XUE Lixia, ZHANG Qingyang. Texture Image Retrieval Method Based on Dual-generalized Gaussian Model and Multi-scale Fusion[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2856-2863. doi: 10.11999/JEIT160181

基于双广义高斯模型和多尺度融合的纹理图像检索方法

doi: 10.11999/JEIT160181
基金项目: 

中国博士后基金(2014M561817),安徽省自然科学基金(J2014AKZR0055)

Texture Image Retrieval Method Based on Dual-generalized Gaussian Model and Multi-scale Fusion

Funds: 

China Postdoctoral Fund (2014M561817), The Natural Science Foundation of Anhui Province (J2014AKZR 0055)

  • 摘要: 纹理因素是描述图像的重要特征之一,为了准确地刻画纹理特征,增强图像的区分能力,该文提出一种基于双树复数小波域统计特征的纹理图像检索方法。首先对图像采用双树复数小波变换得到各子带系数,由于系数存在细微不完全对称分布特性,将其建模为双广义高斯模型。其次,因为各子带系数之间不完全独立也不完全冲突,存在不确定关系,所以采用模糊集合和证据理论(FS-DS)的方法,融合各子带系数特征。最后,对Brodatz和彩色纹理图像库进行仿真实验,并与多种统计建模的方法相比较。结果表明,该方法有效地提高了纹理图像的平均检索率。
  • GUO Jingming and PRASETYO H. Content-based image retrieval using features extracted from halftoning-based block truncation coding[J]. IEEE Transactions on Image Processing, 2015, 24(3): 1010-1024. doi: 10.1109/TIP.2014. 2372619.
    GUO Xian, HUANG Xin, and ZHANG Liangpei. Three- dimensional wavelet texture feature extraction and classification for multi/hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2183-2187. doi: 10.1109/LGRS.2014.2323963.
    HONG Xiaopeng, ZHAO Guoying, PIETIKAINEN M, et al. Combining LBP difference and feature correlation for texture description[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2557-2568. doi: 10.1109/TIP.2014.2316640.
    ARASHLOO S R and KITTLER J. Dynamic texture recognition using multiscale binarized statistical image features[J]. IEEE Transactions on Multimedia, 2014, 16(8): 2099-2109. doi: 10.1109/TMM.2014.2362855.
    HARALICK R M, SHANMUGAM K, and DINSTEIND I. Texture feature for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610-621.
    LI Chaorong, DUAN Guiduo, and ZHONG Fujin. Rotation invariant texture retrieval considering the scale dependence of Gabor wavelet[J]. Transactions on Image Processing, 2015, 24(8): 2344-2354. doi: 10.1109/TIP.2015.2422575.
    RIAZ F, HASSAN A, REHAN S, et al. Texture classification using rotation- and scale-invariant Gabor texture features[J]. IEEE Signal Processing Letters, 2013, 20(6): 607-610. doi: 10.1109/LSP.2013.2259622.
    SCHARFENBERGER C, WONG A, and DAVID A. Clausi. Structure-guided statistical textural distinctiveness for salient region detection in natural images[J]. IEEE Transactions on Image Processing, 2015, 24(1): 457-470. doi: 10.1109/TIP.2014.2380351.
    KINGABURY N. Complex wavelets for shift inavriant analysis and filtering of Signals[J]. Journal of Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253.
    ANANTRASIRICHAI N, BURN J, and BULL D R. Robust texture features based on undecimated dual-tree complexwavelets and local magnitude binary patterns[C]. 2015 IEEE International Conference on Image Processing (ICIP), Qubec, 2015: 3957-3961.
    DO M N and VETTLI M. Wavelet-based texture retrieval using generalized gaussian density and kullbackleiber distance[J]. IEEE Transactions on Image Processing, 2002, 11(2): 146-158. doi: 10.1109/83.982822.
    LASMAR N E and BERTHOUMIEU Y. Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2246-2261. doi: 10.1109/TIP.2014. 2313232.
    ARANI M N and ZHANG Xiaoping. Generalized Gaussian mixture conditional random field model for image labeling[C]. 2014 IEEE Global Conference on, Signal and Information Processing (GlobalSIP), Atlanta GA, 2014: 1068-1072.
    ALLILI M S, BAAZIZ N, and MEJRI M. Texture modeling using contourlets and finite mixtures of generalized Gaussian distributions and applications[J]. IEEE Transactions on Multimedia, 2014, 16(3): 772-784. doi: 10.1109/TMM.2014. 2298832.
    CHOY S K and TONG C S. Statistical wavelet subband characterization based on generalized Gamma density and its application in texture retrieval[J]. IEEE Transactions on Image Processing, 2010, 19(2): 281-289. doi: 10.1109/TIP. 2009.2033400.
    KWITT R, MEERWALD P, and UHL A. Efficient texture image retrieval using copulas in a Bayesian framework[J]. IEEE Transactions on Image Processing, 2011, 20(7): 2063-2077. doi: 10.1109/TIP.2011.2108663.
    COMBREXELLE S, WENDT H, DOBIGEON N, et al. Bayesian estimation of the multifractality parameter for image texture using a whittle approximation[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2540-2551. doi: 10.1109/TIP.2015.2426021.
    WANG Taiyue, LI Hongwei, LI Zhiming, et al. A fast parameter estimation of generalized Gaussian distribution[C]. 2006 8th International Conference on Signal Processing, Beijing, 2006, 1: 1-4. doi: 10.1109/ICOSP.2006.345546.
    韩峰, 杨万海, 袁晓光. 基于模糊集合的证据理论信息融合方法[J]. 控制与决策, 2010, 25(3): 449-452. doi: 10.13195/j.cd. 2010.03.132.hanf.023.
    HAN Feng, YANG Wanhai, and YUAN Xiaoguang. Evidence theory information fusion method based on fuzzy set[J]. Control and Decision, 2010, 25(3): 449-452. doi: 10.13195/ j.cd.2010.03.132.hanf.023.
    DANIEL C. On the solution of linear differential equations with singular coefficients[J]. Journal of Differential Equations, 1982, 46(2): 310-323.
    KWITT R and UHL A. Lightweight probabilistic texture retrieval[J]. IEEE Transactions on Image Processing, 2010, 19(1): 241-253. doi: 10.1109/TIP.2009.2032313.
    MANJUNATH B S and MA W Y. Texture feature features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842. doi: 10.1109/34.531803.
    QU H J, PENG Y H, and SUN W F. Texture image retrival based on Contourlet coefficient modeling with generalized Gaussian distribution[J]. LNCS, 2007, 4683: 493-502.
  • 加载中
计量
  • 文章访问数:  1192
  • HTML全文浏览量:  145
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-07-01
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回