高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超像素和游程直方图的对比度修改检测算法

高铁杠 杨亮 宣妍 佟静

高铁杠, 杨亮, 宣妍, 佟静. 基于超像素和游程直方图的对比度修改检测算法[J]. 电子与信息学报, 2016, 38(11): 2787-2794. doi: 10.11999/JEIT160161
引用本文: 高铁杠, 杨亮, 宣妍, 佟静. 基于超像素和游程直方图的对比度修改检测算法[J]. 电子与信息学报, 2016, 38(11): 2787-2794. doi: 10.11999/JEIT160161
GAO Tiegang, YANG Liang, XUAN Yan, TONG Jing. Contrast Modification Forensic Algorithm Based on Superpixel and Histogram of Run Length[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2787-2794. doi: 10.11999/JEIT160161
Citation: GAO Tiegang, YANG Liang, XUAN Yan, TONG Jing. Contrast Modification Forensic Algorithm Based on Superpixel and Histogram of Run Length[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2787-2794. doi: 10.11999/JEIT160161

基于超像素和游程直方图的对比度修改检测算法

doi: 10.11999/JEIT160161
基金项目: 

天津市自然科学基金(16JCYBJC15700)

Contrast Modification Forensic Algorithm Based on Superpixel and Histogram of Run Length

Funds: 

Tianjin Natural Science Foundation (16JCYBJC 15700)

  • 摘要: 该文提出一种基于超像素和游程直方图的图像对比度修改检测取证算法。算法首先对图像进行超像素分割,并提取每个分割区域的游程直方图特征值,然后将不同方向的特征值进行融合,并进行归一化处理;再计算处理后的特征值数值突变量;最后将区域的数值突变量用支持向量机(SVM)进行分类识别。实验结果表明,和现有的一些算法相比,该文提出的算法计算复杂度低,在多种不同的测试数据库上都具有良好的识别性能。此外,在区域篡改检测实验中,该算法不仅可以定位出篡改区域,还能准确地描绘出篡改区域的轮廓形状。
  • 骆伟祺, 黄继武, 丘国平. 鲁棒的区域复制图像篡改检测技术[J]. 计算机学报, 2007, 30(11): 1998-2007.
    LUO Weiqi, HUANG Jiwu, and QIU Guoping. Robust detection of region-duplication forgery in digital image[J]. Chinese Journal of Computers, 2007, 30(11): 1998-2007.
    李晓飞, 申铉京, 陈海鹏, 等. 基于数字签名方式的图像真伪鉴别算法[J]. 计算机研究与发展, 2012, 49(6): 1348-1356.
    LI Xiaofei, SHEN Xuanjing, CHEN Haipeng, et al. An image identification algorithm based on digital signature method[J]. Computer Research and Development, 2012, 49(6): 1348-1356.
    ANDALIBI M and CHANDLER D. Digital image watermarking via adaptive logo texturization[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5060-5073.
    CAO G, ZHAO Y, NI R, et al. Contrast enhancement-based forensics in digital images[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(3): 515-525.
    ARICI T, DIKBAS S, and ALTUNBASAK Y. A histogram modification framework and its application for image contrast enhancement[J]. IEEE Transactions on Image Processing, 2009, 18(9): 1921-1935.
    CAO G, ZHAO Y, NI R, et al. Anti-forensics of contrast enhancement in digital images[C]. 12th ACM Workshop on Multimedia and Security, ACM, Rome, Italy, 2010: 25-34.
    STAMM M C and LIU K J R. Forensic detection of image manipulation using statistical intrinsic fingerprints[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3): 492-506.
    DE ALESSIA Rosa, FONTANI Marco, MASSAI Matteo, et al. Second-order statistics analysis to cope with contrast enhancement counter-forensics[J]. IEEE Signal Processing Letters, 2015, 22(8): 1132-1136.
    LIN X, LI C, and HU Y. Exposing image forgery through the detection of contrast enhancement[C]. 2013 20th IEEE International Conference on Image Processing (ICIP), Melbourne Australia, 2013: 4467-4471.
    CAO G, ZHAO Y, NI R, et al. Attacking contrast enhancement forensics in digital images[J]. Science China Information Sciences, 2014, 57(5): 1-13.
    SHEN J, DU Y, WANG W, et al. Lazy random walks for superpixel segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1451-1462.
    RADHAKRISHNA A, APPU S, KEVIN S, et al. SLIC superpixels compared to state-of-the-Art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    GOLOMB S W. Run-length encodings[J]. IEEE Transactions on Information Theory, 1966, 12(3): 317-319.
    TANG X. Texture information in run-length matrices[J]. IEEE Transactions on Image Processing, 1998, 7(11): 1602-1609.
    STAMM M C and LIU K J R. Forensic estimation and reconstruction of a contrast enhancement mapping[C]. IEEE International Conference on Acoustics Speech Signal Processing, Dallas, TX, USA 2010, 23(3): 1698-1701.
    YANG Liang, GAO Tiegang, XUAN Yan, et al. Contrast modification forensics algorithm based on merged weight histogram of run length[J]. International Journal of Digital Crime and Forensics, 2016, 8(2): 27-35.
    SHALEV S S and SREBRO N. SVM optimization: inverse dependence on training set size[C]. Proceedings of the 25th International Conference on Machine Learning, ACM, Helsinki, Finland, 2008: 928-935.
    SCHAEFER G and STICH M. UCID - An uncompressed color image database[C]. Storage Retrieval Methods Applications for Multimedia 2004, San Jose, CA, USA, 2003, 5307: 472-480.
    CHANG C and LIN C. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems Technology, 2001, 2(3): 389-396.
    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874.
  • 加载中
计量
  • 文章访问数:  1411
  • HTML全文浏览量:  147
  • PDF下载量:  547
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-19
  • 修回日期:  2016-08-01
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回