高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合L2范数最小化和压缩Haar-like特征匹配的快速目标跟踪

吴正平 杨杰 崔晓梦 张庆年

吴正平, 杨杰, 崔晓梦, 张庆年. 融合L2范数最小化和压缩Haar-like特征匹配的快速目标跟踪[J]. 电子与信息学报, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122
引用本文: 吴正平, 杨杰, 崔晓梦, 张庆年. 融合L2范数最小化和压缩Haar-like特征匹配的快速目标跟踪[J]. 电子与信息学报, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122
WU Zhengping, YANG Jie, CUI Xiaomeng, ZHANG Qingnian. Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122
Citation: WU Zhengping, YANG Jie, CUI Xiaomeng, ZHANG Qingnian. Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122

融合L2范数最小化和压缩Haar-like特征匹配的快速目标跟踪

doi: 10.11999/JEIT160122
基金项目: 

国家自然科学基金(51479159)

Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching

Funds: 

The National Natural Science Foundation of China (51479159)

  • 摘要: 在贝叶斯推理框架下,基于PCA子空间和L2范数最小化的目标跟踪算法能较好地处理视频场景中多种复杂的外观变化,但在目标出现旋转或姿态变化时易发生跟踪漂移现象。针对这一问题,该文提出一种融合L2范数最小化和压缩Haar-like特征匹配的快速视觉跟踪方法。该方法通过去除规模庞大的方块模板集和简化观测似然度函数降低计算的复杂度;而压缩Haar-like特征匹配技术则增强了算法对目标姿态变化及旋转的鲁棒性。实验结果表明:与目前流行的跟踪方法相比,该方法对严重遮挡、光照突变、快速运动、姿态变化和旋转等干扰均具有较强的鲁棒性,且在多个测试视频上可以达到29帧/s的速度,能满足快速视频跟踪要求。
  • COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 2000: 142-149.
    KATJA N, ESTHER K M, and LUC V G. An adaptive color-based filter[J]. Image Vision Computing, 2003, 21(1): 99-110.
    ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141. doi: 10.1007/s11263- 007-0075-7.
    MEI Xue and LING Haibin. Robust visual tracking using minimization[C]. Proceedings of IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 1436-1443.
    MEI Xue, LING Haibin, WU Yi, et al. Minimum error bounded efficient tracker with occlusion detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 1257-1264.
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1830-1837.
    SHI Qinfeng, ERIKSSON A, VAN DEN HENGEL A, et al. Is face recognition really a compressive sensing problem?[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 553-560.
    XIAO Ziyang, LU Huchuan, and WANG Dong. Object tracking with L2_RLS[C]. Proceedings of 21st International Conference on Pattern Recognition, Tsukuba, Japan, 2012: 681-684.
    XIAO Ziyang, LU Huchuan, and WANG Dong. L2-RLS based object tracking[J]. IEEE Transactions on Circuits Systems for Video Technology, 2014, 24(8): 1301-1309. doi: 10.11834/jig.20140105.
    齐美彬, 杨勋, 杨艳芳, 等. 基于L范数最小化的实时目标跟踪[J]. 中国图象图形学报, 2014, 19(1): 36-44. doi: 10.11834/jig.20140105.
    QI Meibin, YANG Xun, YANG Yanfang, et al. Real-time object tracking based on L-norm minimization[J]. Journal of Image and Graphics, 2014, 19(1): 36-44. doi: 10.11834/jig. 20140105.
    袁广林, 薛模根. L范数正则化鲁棒性编码视觉跟踪[J]. 电子与信息学报, 2014, 36(8): 1838-1843. doi: 10.3724/SP.J. 1146.2013.01416.
    YUAN Guanglin and XUE Mogen. Robust coding via L-norm regularization for visual tracking[J]. Journal of Electronics Information Technology, 2014, 36(8): 1838-1843. doi: 10.3724/SP.J.1146.2013.01416.
    WU Zhengping, YANG Jie, LIU Haibo, et al. A real-time object tracking via L2-RLS and compressed Haar-like features matching[J]. Multimedia Tools and Applications, 2016: 1-17. doi: 10.1007/s11042-016-3356-8.
    HONG S and HAN B. Visual tracking by sampling tree-structured graphical models[C]. Proceedings of European Conference on Computer Vision, Zurich, Switzerland, 2014: 1-16. [14] ZHUANG Bohan, LU Huchuan, XIAO Ziyang, et al. Visual tracking via discriminative sparse similarity map[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1872-1881. doi: 10.1109/TIP.2014.2308414.
    ZHANG Kaihua, ZHANG Lei, and YANG Minghsuan. Real-time compressive tracking[C]. Proceedings of European Conference on Computer Vision, Florence, Italy, 2012: 864-877. [16] HENRIQUES J, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI. 2014.2345390.
    LI Hanxin, LI Yi, and FATIH P. Deep track: learning discriminative feature representations by convolutional neural networks for visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, United Kingdom, 2014: 110-119.
    WU Zhengping, YANG Jie, LIU Haibo, et al. Robust compressive tracking under occlusion[C]. Proceedings of International Conference on Consumer Electronics, Berlin, Germany, 2015: 298-302.
    WU Yi, LIM J, and YANG Minghsuan. Online object tracking: a benchmark[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, ORegon, USA, 2013: 2411-2418.
  • 加载中
计量
  • 文章访问数:  1362
  • HTML全文浏览量:  164
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-06-08
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回