高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机摄动再采样的粒子概率假设密度滤波器

徐从安 何友 夏沭涛 程俊图 董云龙

徐从安, 何友, 夏沭涛, 程俊图, 董云龙. 基于随机摄动再采样的粒子概率假设密度滤波器[J]. 电子与信息学报, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114
引用本文: 徐从安, 何友, 夏沭涛, 程俊图, 董云龙. 基于随机摄动再采样的粒子概率假设密度滤波器[J]. 电子与信息学报, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114
XU Cong’an, HE You, XIA Shutao, CHENG Juntu, DONG Yunlong. Particle Probability Hypothesis Density Filter Based on Stochastic Perturbation Re-sampling[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114
Citation: XU Cong’an, HE You, XIA Shutao, CHENG Juntu, DONG Yunlong. Particle Probability Hypothesis Density Filter Based on Stochastic Perturbation Re-sampling[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114

基于随机摄动再采样的粒子概率假设密度滤波器

doi: 10.11999/JEIT160114
基金项目: 

国家自然科学基金 (61471383, 61304103)

Particle Probability Hypothesis Density Filter Based on Stochastic Perturbation Re-sampling

Funds: 

The National Natural Science Foundation of China (61471383, 61304103)

  • 摘要: 作为概率假设密度滤波的典型实现方式,粒子概率假设密度滤波器无需线性高斯等先验假设,因而在多目标跟踪中得到了广泛的应用。为解决粒子退化问题并保持粒子规模,该滤波器引入了重采样机制,然而,该重采样机制易引起粒子多样性耗尽,导致粒子贫化问题产生。为解决这一问题,该文提出一种新的基于随机摄动再采样的粒子概率假设密度滤波器。首先,全面分析了粒子概率假设密度滤波因粒子贫化问题导致目标失跟的过程。然后设计了一种随机摄动再采样算法,该算法在重采样导致粒子多样性缺失时,根据源粒子的位置与复制次数随机产生相应数目的新粒子,并对源粒子进行删减,其可在保留源粒子信息的前提下保持粒子的多样性。最后,该文将该算法纳入概率假设密度滤波框架,提出了一种新的粒子概率假设密度滤波器。仿真结果表明该滤波器在不显著增加运行时间的前提下能够克服粒子贫化问题,相比标准的粒子概率假设密度滤波器具有更好的跟踪性能。
  • BAR-SHALOM Y and FORTMANN T E. Tracking and Data Association[M]. Boston: Academic Press, 1988: 32-36.
    BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1): 5-18. doi: 10.1109/MAES. 2004.1263228.
    FORTMANN T E, BAR-SHALOM Y, and SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184. doi: 10.1109/JOE.1983.1145560.
    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME Journal of Basic Enginerring, 1960, 82(2): 95-108.
    何友, 修建娟, 关欣, 等. 雷达数据处理及应用[M]. 第3版. 北京: 电子工业出版社, 2013: 31-35.
    HE You, XIU Jianjuan, GUAN Xin, et al. Radar Data Processing with Applications[M]. Third Edition. Beijing: Publishing House of Electronics Industry, 2013: 31-35.
    BUCY R S and SENNE K D. Digital synthesis of nonlinear filters[J]. Automatica, 1971, 7(3): 287-298. doi: 10.1016/0005- 1098(71)90121-X.
    CARP J, CLIFFORD P, and FEARN P. Improved particle filter for nonlinear problems[J]. IET Radar, Sonar and Navigation, 1999, 146(1): 1-7. doi: 10.1049/ip-rsn:19990255.
    ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. doi: 10.1109/78.978374.
    SPALL J C. Estimation via markov chain monte carlo[J]. IEEE Control Systems Magazine, 2003, 23(2): 34-45. doi: 10.1109/MCS.2003.1188770.
    FU Xiaoyan and JIA Yingmin. An improvement on resampling algorithm of particle filters[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5414-5420. doi: 10.1109/ TSP.2010.2053031.
    程水英, 张剑云. 裂变自举粒子滤波[J]. 电子学报, 2008, 36(3): 500-504.
    CHENG Shuiying and ZHANG Jianyun. Fission bootstrap particle filtering[J]. Acta Electronica Sinica, 2008, 36(3): 500-504.
    程水英, 张剑云. 粒子滤波评述[J].宇航学报, 2008, 29(4): 1099-1111.
    CHENG Shuiying and ZHANG Jianyun. Review on particle filters[J]. Journal of Astronautics, 2008, 29(4): 1099-1111.
    张琪, 乔玉坤, 孔祥玉, 等. 随机摄动强跟踪粒子滤波算法[J]. 物理学报, 2014, 63(11): 1-7. doi: 10.7498/aps.63.110505.
    ZHANG Qi, QIAO Yukun, KONG Xiongyu, et al. Study on stochastic perturbation strong tracking particle filter[J]. Acta Physicsa Sinica, 2014, 63(11): 1-7. doi: 10.7498/aps. 63. 110505.
    MAHLER R. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178. doi: 10.1109/ TAES.2003.1261119.
    翟岱亮, 雷虎民, 李海宁, 等. 概率假设密度滤波的物理空间意义[J]. 物理学报, 2014, 63(20): 1-6. doi: 10.7498/aps. 63.200204.
    ZHAI Dailiang, LEI Humin, LI Haining, et al. Derivation of the probability hypothesis density filter via the physical- space approach[J]. Acta Physica Sinica, 2014, 63(20): 1-6. doi: 10.7498/aps.63.200204.
    VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104. doi: 10.1109/TSP.2006. 881190.
    VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for Bayesian multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245. doi: 10.1109/TAES.2005. 1561884.
    WU Xinhui, HUANG Gaoming, and GAO Jun. Particle filters for probability hypothesis density filter with the presence of unknown measurement noise covariance[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1517-1523. doi: 10.1016/j.cja. 2013.10.007.
    徐从安, 刘瑜, 熊伟, 等. 新生目标强度未知的双门限粒子PHD滤波器[J]. 航空学报, 2015, 36(12): 3957-3966. doi: 10.7527/S1000-6893.2015.0104.
    XU Congan, LIU Yu, XIONG Wei, et al. A dual threshold particle phd filter with unknown target birth intensity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3957-3966. doi: 10.7527/S1000-6893.2015.0104.
    FRANCESCO P and DU Y K. A particle multi-target tracker for superpositional measurements using labeled random Finite sets[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4348-4358. doi: 10.1109/TSP.2015. 2443727.
    YOHAN P, MARK M, FRANCOIS D, et al. Marginalized particle phd filters for multiple object bayesian filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1182-1196. doi: 10.1109/TAES.2014.120805.
    LI Tiancheng, SUN Shudong, SATTAR T P, et al. High-speed Sigma-gating SMC-PHD filter[J]. Signal Processing, 2013, 93(3): 2586-2593. doi: 10.1016/j.sigpro.2013.03.011.
    LI Bo. Multiple-model Rao-blackwellized particle probability hypothesis density filter for multitarget tracking[J]. International Journal of Control, Automation, and Systems, 2015, 13(2): 426-433. doi: 10.1007/s12555-014-0148-7.
    SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457. doi: 10.1109/TSP.2008.920469.
  • 加载中
计量
  • 文章访问数:  1375
  • HTML全文浏览量:  105
  • PDF下载量:  417
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-07-08
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回