高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形结构的植被高阶相干散射模型研究

饶丽婷 张晓娟 王友成 方广有

饶丽婷, 张晓娟, 王友成, 方广有. 基于分形结构的植被高阶相干散射模型研究[J]. 电子与信息学报, 2016, 38(10): 2502-2508. doi: 10.11999/JEIT160095
引用本文: 饶丽婷, 张晓娟, 王友成, 方广有. 基于分形结构的植被高阶相干散射模型研究[J]. 电子与信息学报, 2016, 38(10): 2502-2508. doi: 10.11999/JEIT160095
RAO Liting, ZHANG Xiaojuan, WANG Youcheng, FANG Guangyou. High-order Coherent Scattering Model for Vegetation with Fractal Structures[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2502-2508. doi: 10.11999/JEIT160095
Citation: RAO Liting, ZHANG Xiaojuan, WANG Youcheng, FANG Guangyou. High-order Coherent Scattering Model for Vegetation with Fractal Structures[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2502-2508. doi: 10.11999/JEIT160095

基于分形结构的植被高阶相干散射模型研究

doi: 10.11999/JEIT160095
基金项目: 

国家自然科学基金(61172017)

High-order Coherent Scattering Model for Vegetation with Fractal Structures

Funds: 

The National Natural Science Foundation of China (61172017)

  • 摘要: 电磁波低频入射情况下,植被中散射体独立不相关的假设无效,此时应考虑散射体之间的相干效应以及近场互作用。该文提出一种基于分形结构的植被高阶相干散射模型,该模型利用分形理论生成近乎真实植被的3维几何结构,根据每个散射体的空间位置信息考虑了相干效应,应用互易定理计算了相邻散射体间高阶互作用,结合非相干的分层模型中后向散射机制划分方式,给出了各项散射机制的表达式。与机载合成孔径雷达实验数据对比,验证了模型的准确性。在针叶林仿真参数下,分析了各项散射机制对总散射效应的贡献与入射频率、角度、植被结构的关系,结果表明,低频入射条件下,稀疏植被散射模型可进一步简化从而应用于参数反演中。
  • KWEON A K and OH Y. Modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2802-2809. doi: 10.1109/ TGRS.2014.2364914.
    孙晗伟, 胡程, 曾涛. 一种三维森林场景极化SAR数据的快速模拟方法[J]. 电子信息学报, 2012, 34(6): 1297-1304. doi: 10.3724/SP.J.1146.2011.00766.
    SUN Hanwei, HU Cheng, and ZENG Tao. A fast method of polarimetric sar data simulation for three-dimension forest stand[J]. Journal of Electronics Information Technology, 2012, 34(6): 1297-1304. doi: 10.3724/SP.J.1146.2011.00766.
    DANUDIRDJO D and HIROSE A. InSAR image regularization and DEM error correction with fractal surface scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1427-1439. doi: 10.1109/TGRS. 2014.2341254.
    ZHANG Qian and CHAI Linna. A parameterized multiple-scattering model for microwave emission from vegetation[C]. Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 645-648. doi: 10.1109/IGARSS. 2015.7325846.
    ZOU Bin, ZHANG Yan, CAO Ning, et al. A four-component decomposition model for PolSAR data using asymmetric scattering component[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 8(3): 1051-1061. doi: 10.1109/ JSTARS.2014.2380151.
    LIANG Xiaolin, ZHAO Xiongwen, LI Shu, et al. A non-stationary geometry-based scattering model for street vehicle-to-vehicle wideband MIMO channels[C]. Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, 2015: 2239-2243. doi: 10.1109/PIMRC.2015.7343670.
    SURENDAR M, BHATTACHARYA A, et al. Development of a snow wetness inversion algorithm using polarimetric scattering power decomposition model[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 42: 65-75. doi: 10.1016/j.jag.2015.05.010.
    LEE J S, AINSWORTH T L, and WANG Y T. Generalized polarimetric model-based decompositions using incoherent scattering models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2474-2491. doi: 10.1109/ TGRS.2013.2262051
    KUSANO S, TAKAHASHI K, and SATO M. A new decomposition of a POLSAR coherency matrix using a generalized scattering model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3933-3940. doi: 10.1109/JSTARS.2014.2367540.
    TABATABAEENEJAD A, BURGIN M, DUAN X Y, et al. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first airMOSS results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 645-658. doi: 10.1109/TGRS.2014.2326839.
    TABATABAEENEJAD A, BURGIN M, and MOGHADDAM M. Potential of L-band radar for retrieval of canopy and subcanopy parameters of boreal forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2150-2160. doi: 10.1109/TGRS.2011.2173349.
    ULABY F T, SARABANDI K, MCDONALD K, et al. Michigan microwave canopy scattering model MIMICS[J]. International Journal of Remote Sensing, 1990, 11(7): 1223-1253.
    LIANG P, MOGHADDAM M, et al. Radar backscattering model for multilayer mixed-species forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2612-2626. doi: 10.1109/TGRS.2005.847909.
    THIRION L, COLIN E, and DAHON C. Capabilities of a forest coherent scattering model applied to radiometry, interferometry, and polarimetry at P- and L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 849-862. doi: 10.1109/TGRS.2005.862523.
    BURGIN M, CLEWLEY D, LUCAS R M, et al. A generalized radar backscattering model based on wave theory for multilayer multispecies vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4832-4845. doi: 10.1109/TGRS.2011.2172949.
    TSANG L, KONG J A, and DING K H. Scattering of Electromagnetic Waves: Theories and Applications[M]. New York: Wiley, 2000: 101-108.
    KARAM M A, FUNG A K, and Antar Y M. Electromagnetic wave scattering from some vegetation samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 799-807. doi: 10.1109/36.7711.
    EWE H T and CHUAH H T. Electromagnetic scattering from an electrically dense vegetation medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2093-2105. doi: 10.1109/36.868868.
    LIN Y C and SARABANDI K. A monte carlo coherent scattering model for forest canopies using fractal-generated trees[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 440-451. doi: 10.1109/36.739083.
    LIU D W, SUN G Q, GUO Z F, et al. Three-dimensional coherent radar backscatter model and simulations of scattering phase center of forest canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 349-357. doi: 10.1109/TGRS.2009.2024301.
    PRUSINKIEWICZ P and LINDENMAYER A. The Algorithmic Beauty of Plants[M]. New York: Spring-Verlag, 1990: 101-107.
    SARABANDI K and POLATIN P F. Electromagnetic scattering from two adjacent objects[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(4): 510-517. doi: 10.1109/8.286219.
    MOGHADDAM M and SAATCHI S. Analysis of scattering mechanisms in SAR imagery over boreal forest: Results from BOREAS93[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1290-1296. doi: 10.1109/ 36.469495.
  • 加载中
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  127
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-07-01
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回