VENEMA V, AMENT F, and SIMMER C. A stochastic iterative amplitude adjusted Fourier transform algorithm with improved accuracy[J]. Nonlinear Processes in Geophysics, 2006, 13(3): 321-328. doi: 10.5194/npg-13- 321-2006.
|
POLAT K and GNES S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform[J]. Applied Mathematics Computation, 2007, 187(2): 1017-1026. doi: 10.1016/j.amc. 2006.09.022.
|
INAN G and ELIF DERYA U. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients[J]. Journal of Neuroscience Methods, 2005, 148(2): 113-121. doi: 10.1016/j.jneumeth.2005.04.013.
|
SUBASI A. EEG signal classification using wavelet feature extraction and a mixture of expert model[J]. Expert Systems with Applications, 2007, 32(4): 1084-1093. doi: 10.1016/ j.eswa.2006.02.005.
|
王登, 苗夺谦, 王睿智. 一种新的基于小波包分解的EEG特征抽取与识别方法研究[J]. 电子学报, 2013, 41(1): 193-198. doi: 10.3969/j.issn.0372-2112.2013.01.33.
|
WANG Deng, MIAO Duoqian, and WANG Ruizhi. A new method of EEG classification with feature extraction based on wavelet packet decomposition[J]. Acta Electronica Sinica, 2013, 41(1): 193-198. doi: 10.3969/j.issn.0372-2112.2013. 01.33.
|
SRINIVASAN V, ESWARAN C, and SRIRAAM A N. Artificial neural network based epileptic detection using time-domain and frequency-domain features[J]. Journal of Medical Systems, 2005, 29(6): 647-660. doi: 10.1007/ s10916-005-6133-1.
|
VAIRAVAN S, CHIKKANNAN E, and NATARAJAN S. Approximate entropy-based epileptic EEG detection using artificial neural networks[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(3): 288-295. doi: 10.1109/TITB.2006.884369.
|
ORHAN U, HEKIM M, and OZER M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model[J]. Expert Systems with Applications, 2011, 38(10): 13475-13481. doi: 10.1016/ j.eswa.2011.04.149.
|
ASLAN K and HSAHIN B. A radial basis function neural network model for classification of epilepsy using EEG signals[J]. Journal of Medical Systems, 2008, 32(5): 403-408. doi: 10.1007/s10916-008-9145-9.
|
连可, 陈世杰, 周建明, 等. 基于遗传算法的SVM多分类决策树优化算法研究[J]. 控制与决策, 2009, 24(1): 7-12. doi: 10.3321/j.issn:1001-0920.2009.01.002.
|
LIAN Ke, CHEN Shijie, ZHOU Jianming , et al. Study on GA-based SVM multi-class classification decision-tree optimization agorithm[J]. Control and Decision, 2009, 24(1): 7-12. doi: 10.3321/j.issn:1001-0920.2009.01.002.
|
LANCKRIET G, GHAOUI L E, BHATTACHARYYA C, et al. Minimax probability machine[C]. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada. 2001: 801-807.
|
LANCKRIET G R G, GHAOUI L E, BHATTACHARYYA C, et al. A robust minimax approach to classification[J]. The Journal of Machine Learning Research, 2002, 3(Dec): 555-582. doi: 10.1162/153244303321897726.
|
DENG Z, CAO L, JIANG Y, et al. Minimax probability TSK fuzzy system classifier: A more transparent and highly interpretable classification model[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 813-826. doi: 10.1109/TFUZZ. 2014.2328014.
|
RUBIO-SOLIS A and PANOUTSOS G. Interval type-2 radial basis function neural network: A modeling framework[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(2): 457-473. doi: 10.1109/TFUZZ.2014.2315656.
|
陈聪, 王士同. 基于模糊分组和监督聚类的RBF回归性能改进[J]. 电子与信息学报, 2009, 31(5): 1157-1160.
|
CHEN Cong and WANG Shitong. Improved RBF regression using fuzzy partition and supervised fuzzy custering[J]. Journal of Electronics Information Technology, 2009, 31(5): 1157-1160.
|
ROTH P M, HIRZER M, KSTINGER M, et al. Mahalanobis Distance Learning for Person Re-identification [M]. London: Person Re-Identification, 2014: 247-267. doi: 10.1007/978-1-4471-6296-4_12.
|
Kang S, Cho S, and Kang P. Constructing a multi-class classifier using one-against-one approach with different binary classifiers[J]. Neurocomputing, 2014, 149, Part B(PB): 677-682. doi: 10.1016/j.neucom.2014.08.006.
|
GALAR M, FERN?NDEZ A, and BARRENECHEA E. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognition, 2011, 44(8): 1761-1776. doi: 10.1016/j.patcog.2011.01.017.
|
ANDRZEJAK R G, LEHNERTZ K, MORMANN F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state[J]. Physical Review E, 2001, 64(6): 061907. doi: 10.1103/PhysRevE.64. 061907.
|
PARVEZ M Z and PAUL M. Epileptic seizure detection by analyzing EEG signals using different transformation techniques[J]. Neurocomputing, 2014, 145(18): 190-200. doi: 10.1016/j.neucom.2014.05.044.
|
ROY V and SHUKLA S. Automatic removal of artifacts from EEG signal based on spatially constrained ICA using daubechies wavelet[J]. International Journal of Modern Education and Computer Science (IJMECS), 2014, 6(7): 31-39. doi: 10.5815/ijmecs.2014.07.05.
|