高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向癫痫脑电图信号识别的径向基最小最大概率分类树

邓赵红 陈俊勇 刘解放 王士同

邓赵红, 陈俊勇, 刘解放, 王士同. 面向癫痫脑电图信号识别的径向基最小最大概率分类树[J]. 电子与信息学报, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082
引用本文: 邓赵红, 陈俊勇, 刘解放, 王士同. 面向癫痫脑电图信号识别的径向基最小最大概率分类树[J]. 电子与信息学报, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082
DENG Zhaohong, CHEN Junyong, LIU Jiefang, WANG Shitong. Radial Basis Minimax Probability Classification Tree for Epilepsy ElectroEncephaloGram Signal Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082
Citation: DENG Zhaohong, CHEN Junyong, LIU Jiefang, WANG Shitong. Radial Basis Minimax Probability Classification Tree for Epilepsy ElectroEncephaloGram Signal Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082

面向癫痫脑电图信号识别的径向基最小最大概率分类树

doi: 10.11999/JEIT160082
基金项目: 

江苏省杰出青年基金(BK20140001),上海市科学技术委员会扬帆项目(14YF1411000),上海市教委创新项目(14YZ131)

Radial Basis Minimax Probability Classification Tree for Epilepsy ElectroEncephaloGram Signal Recognition

Funds: 

The Youth Fund of Jiangsu Province (BK20140001), YangFan Project of Shanghai Municipal Science and Technology Commission(Grant No. 14YF1411000), The Innovation Program of Shanghai Municipal Education Commission (Grant No. 14YZ131)

  • 摘要: 脑电图(EEG)信号检测和识别是癫痫病的重要诊断手段。径向基函数神经网络具有出色的逼近能力和泛化性能,能直接识别出不同状态的脑电信号,但其透明性和可解释性差,忽视了不同类别数据间可分性的不同。对此,该文提出一种基于径向基函数神经网络和最小最大概率决策技术的分类树,采用一对一策略和排除法,更多考虑了类间可分性的不同。针对脑电信号识别的实验表明,所提方法结构清晰,分类能力强,可解释性更好。
  • VENEMA V, AMENT F, and SIMMER C. A stochastic iterative amplitude adjusted Fourier transform algorithm with improved accuracy[J]. Nonlinear Processes in Geophysics, 2006, 13(3): 321-328. doi: 10.5194/npg-13- 321-2006.
    POLAT K and GNES S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform[J]. Applied Mathematics Computation, 2007, 187(2): 1017-1026. doi: 10.1016/j.amc. 2006.09.022.
    INAN G and ELIF DERYA U. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients[J]. Journal of Neuroscience Methods, 2005, 148(2): 113-121. doi: 10.1016/j.jneumeth.2005.04.013.
    SUBASI A. EEG signal classification using wavelet feature extraction and a mixture of expert model[J]. Expert Systems with Applications, 2007, 32(4): 1084-1093. doi: 10.1016/ j.eswa.2006.02.005.
    王登, 苗夺谦, 王睿智. 一种新的基于小波包分解的EEG特征抽取与识别方法研究[J]. 电子学报, 2013, 41(1): 193-198. doi: 10.3969/j.issn.0372-2112.2013.01.33.
    WANG Deng, MIAO Duoqian, and WANG Ruizhi. A new method of EEG classification with feature extraction based on wavelet packet decomposition[J]. Acta Electronica Sinica, 2013, 41(1): 193-198. doi: 10.3969/j.issn.0372-2112.2013. 01.33.
    SRINIVASAN V, ESWARAN C, and SRIRAAM A N. Artificial neural network based epileptic detection using time-domain and frequency-domain features[J]. Journal of Medical Systems, 2005, 29(6): 647-660. doi: 10.1007/ s10916-005-6133-1.
    VAIRAVAN S, CHIKKANNAN E, and NATARAJAN S. Approximate entropy-based epileptic EEG detection using artificial neural networks[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(3): 288-295. doi: 10.1109/TITB.2006.884369.
    ORHAN U, HEKIM M, and OZER M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model[J]. Expert Systems with Applications, 2011, 38(10): 13475-13481. doi: 10.1016/ j.eswa.2011.04.149.
    ASLAN K and HSAHIN B. A radial basis function neural network model for classification of epilepsy using EEG signals[J]. Journal of Medical Systems, 2008, 32(5): 403-408. doi: 10.1007/s10916-008-9145-9.
    连可, 陈世杰, 周建明, 等. 基于遗传算法的SVM多分类决策树优化算法研究[J]. 控制与决策, 2009, 24(1): 7-12. doi: 10.3321/j.issn:1001-0920.2009.01.002.
    LIAN Ke, CHEN Shijie, ZHOU Jianming , et al. Study on GA-based SVM multi-class classification decision-tree optimization agorithm[J]. Control and Decision, 2009, 24(1): 7-12. doi: 10.3321/j.issn:1001-0920.2009.01.002.
    LANCKRIET G, GHAOUI L E, BHATTACHARYYA C, et al. Minimax probability machine[C]. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada. 2001: 801-807.
    LANCKRIET G R G, GHAOUI L E, BHATTACHARYYA C, et al. A robust minimax approach to classification[J]. The Journal of Machine Learning Research, 2002, 3(Dec): 555-582. doi: 10.1162/153244303321897726.
    DENG Z, CAO L, JIANG Y, et al. Minimax probability TSK fuzzy system classifier: A more transparent and highly interpretable classification model[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 813-826. doi: 10.1109/TFUZZ. 2014.2328014.
    RUBIO-SOLIS A and PANOUTSOS G. Interval type-2 radial basis function neural network: A modeling framework[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(2): 457-473. doi: 10.1109/TFUZZ.2014.2315656.
    陈聪, 王士同. 基于模糊分组和监督聚类的RBF回归性能改进[J]. 电子与信息学报, 2009, 31(5): 1157-1160.
    CHEN Cong and WANG Shitong. Improved RBF regression using fuzzy partition and supervised fuzzy custering[J]. Journal of Electronics Information Technology, 2009, 31(5): 1157-1160.
    ROTH P M, HIRZER M, KSTINGER M, et al. Mahalanobis Distance Learning for Person Re-identification [M]. London: Person Re-Identification, 2014: 247-267. doi: 10.1007/978-1-4471-6296-4_12.
    Kang S, Cho S, and Kang P. Constructing a multi-class classifier using one-against-one approach with different binary classifiers[J]. Neurocomputing, 2014, 149, Part B(PB): 677-682. doi: 10.1016/j.neucom.2014.08.006.
    GALAR M, FERN?NDEZ A, and BARRENECHEA E. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognition, 2011, 44(8): 1761-1776. doi: 10.1016/j.patcog.2011.01.017.
    ANDRZEJAK R G, LEHNERTZ K, MORMANN F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state[J]. Physical Review E, 2001, 64(6): 061907. doi: 10.1103/PhysRevE.64. 061907.
    PARVEZ M Z and PAUL M. Epileptic seizure detection by analyzing EEG signals using different transformation techniques[J]. Neurocomputing, 2014, 145(18): 190-200. doi: 10.1016/j.neucom.2014.05.044.
    ROY V and SHUKLA S. Automatic removal of artifacts from EEG signal based on spatially constrained ICA using daubechies wavelet[J]. International Journal of Modern Education and Computer Science (IJMECS), 2014, 6(7): 31-39. doi: 10.5815/ijmecs.2014.07.05.
  • 加载中
计量
  • 文章访问数:  1081
  • HTML全文浏览量:  119
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-06-08
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回