高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于可变形部件模型的快速对象检测算法

李春伟 于洪涛 李邵梅 卜佑军

李春伟, 于洪涛, 李邵梅, 卜佑军. 一种基于可变形部件模型的快速对象检测算法[J]. 电子与信息学报, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080
引用本文: 李春伟, 于洪涛, 李邵梅, 卜佑军. 一种基于可变形部件模型的快速对象检测算法[J]. 电子与信息学报, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080
LI Chunwei, YU Hongtao, LI Shaomei, BU Youjun. Rapid Object Detection Algorithm Based on Deformable Part Models[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080
Citation: LI Chunwei, YU Hongtao, LI Shaomei, BU Youjun. Rapid Object Detection Algorithm Based on Deformable Part Models[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080

一种基于可变形部件模型的快速对象检测算法

doi: 10.11999/JEIT160080
基金项目: 

国家自然科学基金(61572519, 61521003)

Rapid Object Detection Algorithm Based on Deformable Part Models

Funds: 

The National Natural Science Foundation of China (61572519, 61521003)

  • 摘要: 为了解决可变形部件模型检测过程中的速度瓶颈问题,该文针对模型的检测流程,提出一种结合快速特征金字塔计算的级联可变形部件模型。由于模型的检测速度主要取决于特征计算以及对象定位这两个过程,提出一种两阶段的加速算法:首先采用尺度上稀疏采样的特征金字塔来近似表示精细采样的多尺度图像特征,以加快特征计算过程;然后在定位过程中结合级联算法,以一个序列模型顺序地评估各个部件,从而快速剪除大部分可能性较小的对象假设,以加快对象定位过程。在PASCAL VOC 2007和INRIA数据集上的实验结果表明,该算法可以明显加快检测速度,而检测精度仅略有下降。
  • FELZENSZWALB P, GIRSHICK R, MCALLESTER D, et al. Object detection with discriminatively trained part based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. doi: 10.1109/TPAMI.2009.167.
    YAO Benjamin, NIE Bruce, LIU Zicheng, et al. Animated pose templates for modeling and detecting human actions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 436-452. doi: 10.1109/TPAMI. 2013.144.
    WEN Jia, WANG Xueping, KONG Lingfu, et al. Using weighted part model for pedestrian detection in crowded scenes based on image segmentation[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Scienes 2016, 86(1): 125-136. doi: 10.1007/s40010-015- 0231-3.
    OROZCO J, MARTINEZ B, and PANTIC M. Empirical analysis of cascade deformable models for multi-view face detection[J]. Image and Vision Computing, 2015, 42(1): 47-61. doi: 10.1016/j.imavis.2015.07.002.
    OHNBAR E and TRIVEDI M M. Learning to detect vehicles by clustering appearance patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2511-2521. doi: 10.1109/TITS.2015.2409889.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886-893. doi: 10.1109/ CVPR.2005.177.
    FELZENSZWALB P, GIRSHICK R, and MCALLESTER D. Cascade object detection with deformable part models[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2241-2248. doi: 10.1109/CVPR.2010.5539906.
    PEDERSOLI M, VEDALDI A, GONZALEZ J, et al. A coarse-to-fine approach for fast deformable object detection[J]. Pattern Recognition, 2015, 48(7): 1844-1853. doi: 10.1016/j.patcog.2014.11.006.
    ZHU Menglong, ATANASOV N, PAPPAS G J, et al. Active deformable part models inference[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 281-296. doi: 10.1007/978-3-319- 10584-0_19.
    KOKKINOS I. Bounding part scores for rapid detection with deformable part models[C]. Proceedings of the 12th European Conference on Computer Vision, Firenze, Italy, 2012: 41-50. doi: 10.1007/978-3-642-33885-4_5.
    LIU Qi, HUANG Zi, and HU Fuqiao. Accelerating convolution-based detection model on GPU[C]. Proceedings of the IEEE Estimation, Detection and Information Fusion, Harbin, China, 2015: 61-66. doi: 10.1109/ICEDIF.2015. 7280163.
    DUBOUT C and FLEURET F. Exact acceleration of linear object detectors[C]. Proceedings of the 12th European Conference on Computer Vision, Firenze, Italy, 2012: 301-311. doi: 10.1007/978-3-642-33712-3_22.
    YAN Junjie, LEI Zhen, WEN Longyin, et al. The fastest deformable part model for object detection[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2497-2504. doi: 10.1109/CVPR.2014.320.
    SONG H O, GIRSHICK R, ZICKLER S, et al. Generalized sparselet models for real-time multiclass object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(5): 1001-1012. doi: 10.1109/TPAMI. 2014.2353631.
    PIRSIAVASH H. Steerable part models[C]. Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3226-3233. doi: 10.1109/CVPR.2012.6248058.
    KOKKINOS I. Shufflets: shared mid-level parts for fast object detection[C]. Proceedings of the 14th International Conference on Computer Vision, Sydney, Australia, 2013: 1393-1400. doi: 10.1109/ICCV.2013.176.
    DEAN T, RUZON M, SEGAL M, et al. Fast, accurate detection of 100,000 object classes on a single machine[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1814-1821. doi: 10.1109/CVPR.2013.237.
    RUDERM D L. The statistics of natural images[J]. Network Computation in Neural Systems, 2009, 5(4): 517-548. doi: 10.1088/0954-898X_5_4_006.
    DOLLAR P, APPEL R, BELONGIE S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532-1545. doi: 10.1109/TPAMI.2014.2300479.
    HOSANG J, BENENSON R, DOLLAR P, et al. What makes for effective detection proposals?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 814-830. doi: 10.1109/TPAMI.2015.2465908.
  • 加载中
计量
  • 文章访问数:  1145
  • HTML全文浏览量:  98
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-06-08
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回