高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可变拟阵搜索算法构造码率为1/p的二进制系统准循环码

张水平 林平平 巫光福 江林伟

张水平, 林平平, 巫光福, 江林伟. 基于可变拟阵搜索算法构造码率为1/p的二进制系统准循环码[J]. 电子与信息学报, 2016, 38(11): 2916-2921. doi: 10.11999/JEIT160074
引用本文: 张水平, 林平平, 巫光福, 江林伟. 基于可变拟阵搜索算法构造码率为1/p的二进制系统准循环码[J]. 电子与信息学报, 2016, 38(11): 2916-2921. doi: 10.11999/JEIT160074
ZHANG Shuiping, LIN Pingping, WU Guangfu, JIANG Linwei. Construct the Systematic Binary Quasi-cyclic Codes with Rate 1/p Based on Variable Matroid Search Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2916-2921. doi: 10.11999/JEIT160074
Citation: ZHANG Shuiping, LIN Pingping, WU Guangfu, JIANG Linwei. Construct the Systematic Binary Quasi-cyclic Codes with Rate 1/p Based on Variable Matroid Search Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2916-2921. doi: 10.11999/JEIT160074

基于可变拟阵搜索算法构造码率为1/p的二进制系统准循环码

doi: 10.11999/JEIT160074
基金项目: 

国家自然科学基金(11461031, 61562037),江西省自然科学基金(20151BAB217016)

Construct the Systematic Binary Quasi-cyclic Codes with Rate 1/p Based on Variable Matroid Search Algorithm

Funds: 

The National Natural Science Foundation of China (11461031, 61562037), The Natural Science Foundation of Jiangxi Province (20151BAB217016)

  • 摘要: 该文针对拟阵搜索算法复杂度高以及局部拟阵搜索算法无法搜索到全部最优码的问题,通过研究拟阵搜索算法,提出可变拟阵搜索算法,并用于搜索准循环码。该算法通过减少重复搜索从而降低运算复杂度;基于该算法构造码率为1/p的二进制系统准循环码,随着整数p的变化,生成矩阵减少或者增加一个循环矩阵,产生码率均为1/p的最优码。通过实验得到两个最小距离比现有最优码更大的准循环码,表明算法的可行性和优越性。
  • TOWNSEND R and WELDON E. Self-orthogonal quasi-cyclic codes[J]. IEEE Transactions on Information Theory, 1967, 13(2): 183-195. doi: 10.1109/TIT.1967. 1053974.
    CHEN Z. New results on binary quasi-cyclic codes[C]. Proceedings of IEEE International Symposium on Information Theory, Sorrento Italy, 2000: 151-154.
    HEIJNEN P, VAN T H, VERHOEFF T, et al. Some new binary quasi-cyclic codes[J]. IEEE Transactions on Information Theory, 1998, 44(5): 1994-1996. doi: 10.1109/ 18.705580.
    张轶, 达新宇, 苏一栋. 利用等差数列构造大围长准循环低密度奇偶校验码[J]. 电子与信息学报, 2015, 37(2): 394-398. doi: 10.11999/JEIT140538.
    ZHANG Yi, DA Xinyu, and SU Yidong. Construction of quasi-cyclic low-density parity-check codes with a large girth based on arithmetic progression[J]. Journal of Electronics Information Technology, 2015, 37(2): 394-398. doi: 10.11999/JEIT140538.
    郭锐, 刘春于, 张华, 等. 分簇无线传感器网络中根校验全分集LDPC码设计与能效分析[J]. 电子与信息学报, 2015, 37(7): 1580-1585. doi: 10.11999/JEIT141294.
    GUO Rui, LIU Chunyu, ZHANG Hua, et al. Full diversity LDPC codes design and energy efficiency analysis for clustering wireless sensor networks[J]. Journal of Electronics Information Technology, 2015, 37(7): 1580-1585. doi: 10.11999/JEIT141294.
    陈震华, 许肖梅, 陈友淦, 等. 浅海水声信道中原模图LDPC码的设计及性能分析[J]. 电子与信息学报, 2016, 38(1): 153-159. doi: 10.11999/JEIT150415.
    CHEN Zhenhua, XU Xiaomei, CHEN Yougan, et al. Design and analysis of Protograph-based LDPC codes in shallow water acoustic channels[J]. Journal of Electronics Information Technology, 2016, 38(1): 153-159. doi: 10.11999/ JEIT150415.
    兰亚柱, 杨海钢, 林郁. 动态自适应低密度奇偶校验码译码器的FPGA实现[J]. 电子与信息学报, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
    LAN Yazhu, YANG Haigang, and LIN Yu. Design of dynamic adaptive LDPC decoder based on FPGA[J]. Journal of Electronics Information Technology, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
    WHITNEY H. On the abstract properties of linear dependence[J]. The American Mathematical Society, 1935, 57(1): 509-533. doi: 10.1007/978-1-4612-2972-8_10.
    GREENE C. Weight enumeration and the geometry of linear codes[J]. Studies in Applied Mathematics, 1976, 55(55): 119-128. doi: 10.1002/sapm1976552119.
    BARG A. The matroid of supports of a linear code[J]. Applicable Algebra in Engineering Communication Computing, 1997, 8(2): 165-172. doi: 10.1007/s 002000050060.
    KASHYAP N. A decomposition theory for binary linear codes[J]. IEEE Transactions on Information Theory, 2008, 54(7): 3035-3058. doi: 10.1109/TIT.2008.924700.
    巫光福, 王琳. 一种短的高码率LDPC码设计[J].应用科学学报, 2013, 31(6): 559-563. doi: 10.3969/j.issn.0255-8297. 2013.06.002.
    WU Guangfu and WANG Lin. Design of a short high rate LDPC code[J]. Journal of Applied Sciences, 2013, 31(6): 559-563. doi: 10.3969/j.issn.0255-8297.2013.06.002.
    WU Guangfu, WANG Lin, and TRUONG T K. Use of matroid theory to construct a class of good binary linear codes[J]. IET Communications, 2014, 8(6): 893-898. doi: 10.1049/iet-com.2013.0671.
    WU Guangfu, Chang H C, WANG Lin, et al. Constructing rate 1/p systematic binary quasi-cyclic codes based on the matroid theory[J]. Designs Codes and Cryptography, 2014, 71(1): 47-56. doi: 10.1007/s10623-012-9715-1.
    WU Guangfu, LI Yong, ZHANG Shuiping, et al. A random local matroid search algorithm to construct good rate 1/p systematic binary Quasi-Cyclic codes[J]. IEEE Communications Letters, 2015, 19(5): 699-702. doi: 10.1109/ LCOMM.2015.2401572.
    OXLEY J. Matroid Theory [M]. Oxford U K, Oxford University Press, 2011: 5-26.
    TILBURG H C A V. On quasi-cyclic codes with rate 1/m [J]. IEEE Transactions on Information Theory, 1978, 24(5): 628-629. doi: 10.1109/TIT.1978.1055929.
    GULLIVER T A and BHARGAVA V K. An updated table of rate 1/p binary quasi-cyclic codes[J]. Applied Mathematics Letters, 1995, 8(5): 81-86. doi: 10.1016/0893-9659 (95)00071-W.
  • 加载中
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  116
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-06-15
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回