高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高速全并行快速傅里叶变换器

陈杰男 费超 袁建生 曾维棋 卢浩 胡剑浩

陈杰男, 费超, 袁建生, 曾维棋, 卢浩, 胡剑浩. 超高速全并行快速傅里叶变换器[J]. 电子与信息学报, 2016, 38(9): 2410-2414. doi: 10.11999/JEIT160036
引用本文: 陈杰男, 费超, 袁建生, 曾维棋, 卢浩, 胡剑浩. 超高速全并行快速傅里叶变换器[J]. 电子与信息学报, 2016, 38(9): 2410-2414. doi: 10.11999/JEIT160036
CHEN Jienan, FEI Chao, YUAN Jiansheng, ZENG Weiqi, LU Hao, HU Jianhao. An Ultra-high-speed Fully-parallel Fast Fourier Transform Design[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2410-2414. doi: 10.11999/JEIT160036
Citation: CHEN Jienan, FEI Chao, YUAN Jiansheng, ZENG Weiqi, LU Hao, HU Jianhao. An Ultra-high-speed Fully-parallel Fast Fourier Transform Design[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2410-2414. doi: 10.11999/JEIT160036

超高速全并行快速傅里叶变换器

doi: 10.11999/JEIT160036
基金项目: 

国家自然科学基金(6150010678, 61371104)

An Ultra-high-speed Fully-parallel Fast Fourier Transform Design

Funds: 

The National Natural Science Foundation of China (6150010678, 61371104)

  • 摘要: 设计和实现超高速快速傅里叶变换器(FFT)在雷达与未来无线通信等系统中具有重要意义。该文提出首个全并行架构的FFT处理器,其避免了复杂的路由寻址以及数据访问冲突等问题,基于较大基进行分解降低运算复杂度。由于旋转因子已知和固定,大量的乘法转化为了定系数乘法。同时由于采用了串行的计算单元,在达到全并行结构的高速度同时硬件复杂度相对较低;所有的硬件计算单元处于满载的条件,其硬件效率能达到100%。根据实际的实现结果,所提出的512点FFT处理器结构能够达到5.97倍速度面积比的提升,同时硬件开销仅占用了Xilinx V7-980t FPGA 30%的查找表资源与9%的寄存器资源。
  • 霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776-2789. doi: 10.11999/ JEIT150335.
    HUO Kai and ZHAO Jinjin. The development and prospect of the new OFDM radar[J]. Journal of Electronics Information Technology, 2015, 37(11): 2776-2789. doi: 10. 11999/JEIT150335.
    张洪伦, 巴晓辉, 陈杰, 等. 基于FFT的微弱GPS信号频率精细估计[J]. 电子与信息学报, 2015, 37(9): 2132-2137. doi: 10.11999/JEIT150204.
    ZHANG Honglun, BA Xiaohui, CHEN Jie, et al. FFT-based fine frequency estimation for weak GPS signal[J]. Journal of Electronics Information Technology, 2015, 37(9): 2132-2137. doi: 10.11999/JEIT150204.
    罗亚松, 许江湖, 胡洪宁, 等. 正交频分复用传输速率最大化自适应水声通信算法研究[J]. 电子与信息学报, 2015, 37(12): 2872-2876. doi: 10.11999/JEIT150440.
    LUO Yasong, XU Jianghu, HU Hongning, et al. Research on self-adjusting OFDM underwater acoustic communication algorithm for transmission rate maximization[J]. Journal of Electronics Information Technology, 2015, 37(12): 2872-2876. doi: 10.11999/JEIT150440.
    WANG Chao, YAN Yuwei, and FU Xiaoyu. A high- throughput low-complexity radix-24-22-23 FFT/IFFT processor with parallel and normal input/output order for IEEE 802.11ad systems[J]. IEEE Transactions on Very Large Scale Integration Systems, 2015, 23(11): 2728-2732. doi: 10.1109/TVLSI.2014.2365586.
    YU Chu and YEN Mao-Hsu. Area-efficient 128-to 2048/ 1536-point pipeline FFT processor for LTE and mobile WiMAX systems[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 23(9): 1793-1800. doi: 10.1109/ TVLSI.2014.2350017.
    WANG Zeke, LIU Xue, HE Bingsheng, et al. A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 23(5): 973-977. doi: 10.1109/TVLSI.2014. 2319335.
    CHEN Jienan, Hu Jianhao, and LEE Shuyang. High throughput and hardware efficient FFT architecture for LTE application[C]. IEEE Wireless Communications Networking Conference. Shanghai, 2012: 826-831. doi: 10.1109/WCNC.2012.6214486.
    CHEN Jienan, HU Jianhao, LEE Shuyang, et al. Hardware efficient mixed radix-25/16/9 FFT for LTE systems[J]. IEEE Transactions on Very Large Scale Integration Systems, 2015, 23(2): 221-229. doi: 10.1109/TVLSI.2014.2304834.
    COOLEY J W and TUKEY J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297-301. doi: 10.2307/2003354.
    DUHAMEL P and VETTERLI M. Fast fourier transforms: a tutorial review and a state of the art[J]. Signal Processing, 1990, 19(4): 259-299. doi: 10.1016/0165-1684(90)90158-U.
    YANG Lang and CHEN T W. A low power 64-point bit-serial FFT engine for implantable biomedical applications[C]. Euromicro Conference on Digital System Design, Funchal, Portugal, 2015: 383-389. doi: 10.1109/DSD.2015.30.
    PARHI K K. VLSI Digital Signal Processing Systems: Design and Implementation[M]. New York, USA, John Wiley Sons, 1999: 490-499.
    MA Zhenguo, YIN Xiaobo, and YU Feng. A novel memory-based FFT architecture for real-valued signals based on radix-2 decimation-in-frequency algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(9): 876-880. doi: 10.1109/TCSII.2015.2435522.
  • 加载中
计量
  • 文章访问数:  1684
  • HTML全文浏览量:  171
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 修回日期:  2016-05-30
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回