高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种启发式变阶直觉模糊时间序列预测模型

王亚男 雷英杰 王毅 郑寇全

王亚男, 雷英杰, 王毅, 郑寇全. 一种启发式变阶直觉模糊时间序列预测模型[J]. 电子与信息学报, 2016, 38(11): 2795-2802. doi: 10.11999/JEIT160013
引用本文: 王亚男, 雷英杰, 王毅, 郑寇全. 一种启发式变阶直觉模糊时间序列预测模型[J]. 电子与信息学报, 2016, 38(11): 2795-2802. doi: 10.11999/JEIT160013
WANG Yanan, LEI Yingjie, WANG Yi, ZHENG Kouquan. A Heuristic Adaptive-order Intuitionistic Fuzzy Time Series Forecasting Model[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2795-2802. doi: 10.11999/JEIT160013
Citation: WANG Yanan, LEI Yingjie, WANG Yi, ZHENG Kouquan. A Heuristic Adaptive-order Intuitionistic Fuzzy Time Series Forecasting Model[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2795-2802. doi: 10.11999/JEIT160013

一种启发式变阶直觉模糊时间序列预测模型

doi: 10.11999/JEIT160013
基金项目: 

国家自然科学青年基金项目(61402517)

A Heuristic Adaptive-order Intuitionistic Fuzzy Time Series Forecasting Model

Funds: 

The National Natural Science Foundation of China (61402517)

  • 摘要: 论文针对已有高阶模糊时间序列模型在预测精度和预测范围上的限制,结合直觉模糊集理论,提出一种启发式变阶直觉模糊时间序列预测模型。模型首先应用直接模糊聚类算法对论域进行非等分划分;然后,针对直觉模糊时间序列的数据特性,改进现有直觉模糊集隶属度和非隶属度函数的建立方法;最后,采用阶数随序列实时变化的高阶预测规则进行预测,并将历史数据发展趋势的启发知识引入解模糊过程,使模型的预测范围得到扩展。在Alabama大学入学人数和北京市日均气温两组数据集上分别与典型方法进行对比实验,结果表明该模型有效克服了传统模型的缺点,拥有较高的预测精度,证明了模型的有效性和优越性。
  • SONG Q and CHISSOM B S. Fuzzy time series and its models[J]. Fuzzy Sets and Systems, 1993, 54(1): 269-277. doi: 10.1016/0165-0114(93)90372-O.
    SONG Q and CHISSOM B S. Forecasting enrollments with fuzzy time series-Part I[J]. Fuzzy Sets and Systems, 1993, 54(1): 1-9. doi: 10.1016/0165-0114(93)90355-L.
    SONG Q and CHISSOM B S. Forecasting enrollments with fuzzy time seriesPart II[J]. Fuzzy Sets and System, 1994, 62(1): 1-8. doi: 10.1016/0165-0114(94)90067-1.
    EFENDI R, ISMAIL Z, and DERIS M M. A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand[J]. Applied Soft Computing, 2015, 28(3): 422-430. doi: 10.1016/j.asoc.2014.11.043.
    SUN Baiqing, GUO Haifeng, KARIMI H R, et al. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series[J]. Neurocomputing, 2015, 151(3): 1528-1536. doi: 10.1016/j.neucom.2014.09.018.
    TSAUR R C and KUO T C. Tourism demand forecasting using a novel high-precision fuzzy time series model[J]. International Journal of Innovative Computing, Information and Control, 2014, 10(2): 695-701.
    HUANG K and YU T H-K. Ratio-based lengths of intervals to improve fuzzy time series forecasting[J]. IEEE Transactions on Systems, Man, and CyberneticsPart B: Cybernetics, 2006, 36(2): 328-340. doi: 10.1109/TSMCB.2005.857093.
    CAI Qisen, ZHANG Defu, ZHENG Wei, et al. A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression[J]. Knowledge-Based Systems, 2015, 74(1): 61-68. doi: 10.1016/j.knosys.2014.11.003.
    IZAKIAN H, PEDRYCZ W, and JAMAL I. Fuzzy clustering of time series data using dynamic time warping distance[J]. Engineering Applications of Artificial Intelligence, 2015, 39(3): 235-244. doi: 10.1016/j.engappai.2014.12.015.
    LU Wei, CHEN Xueyan, PEDRYCZ W, et al. Using interval information granules to improve forecasting in fuzzy time series[J]. International Journal of Approximate Reasoning, 2015, 57(2): 1-18. doi: 10.1016/j.ijar.2014.11.002.
    ABDOLLAHZADE M, MIRANIAN A, HASSANI H, et al. A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting[J]. Information Sciences, 2015, 295(2): 107-125. doi: 10.1016/ j.ins.2014.09.002.
    CHENG S H, CHEN S M, and JIAN W S. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures[J]. Information Sciences, 2016, 327(1): 272-287. doi: 10.1016/j.ins.2015.08.024.
    PENG Hungwen, WU Shenfu, WEI Chiaching, et al. Time series forecasting with a neuro-fuzzy modeling scheme[J]. Applied Soft Computing, 2015, 32(7): 481-493. doi: 10.1016/ j.asoc.2015.03.059.
    CHEN M Y and CHEN B T. Online fuzzy time series analysis based on entropy discretization and a fast Fourier transform[J]. Applied Soft Computing, 2014, 14(1): 156-166. doi: 10.1016/j.asoc.2013.07.024.
    DENG W, WANG G, and ZHANG X. A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149(12): 39-49. doi: 10.1016/ j.chemolab.2015.09.017.
    PEREIRA C M, ALMEIDA N N, and VELLOSO M. Fuzzy modeling to forecast an electric load time series[J]. Procedia Computer Science, 2015, 55: 395-404. doi: 10.1016/j.procs. 2015.07.089.
    SINGH P and BORAH B. Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization[J]. International Journal of Approximate Reasoning, 2014, 55(3): 812-833. doi: 10.1016/j.ijar.2013. 09.014.
    CHEN S M and CHEN S W. Fuzzy forecasting based on two-factor second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships[J]. IEEE Transactions on Cybernetics, 2015, 45(3): 405-417. doi: 10.1109/TCYB.2014.2326888.
    HWANG J R, CHEN S M, and LEE C H. Handling forecasting problems using fuzzy time series[J]. Fuzzy Sets and Systems, 1998, 100(1): 217-228. doi: 10.1016/S0165-0114(97)00121-8.
    LIU Haotien and WEI Maolen. An improved fuzzy forecasting method for seasonal time series[J]. Expert Systems with Applications, 2010, 37(9): 6310-6318. doi: 10.1016/ j.eswa.2010.02.090.
    SINGH P and BORACH B. High-order fuzzy-neuro expert system for time series forecasting[J]. Knowledge-Based Systems, 2013, 46(7): 12-21. doi: 10.1016/j.knosys.2013. 01.030.
    ASKARI S and MONTAZERIN N. A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering[J]. Expert Systems with Applications, 2015, 42(4): 2121-2135. doi: 10.1016/j.eswa.2014.09.036.
    CASTILLO O, ALANIS A, GARCIA M, et al. An intuitionistic fuzzy system for time series analysis in plant monitoring and diagnosis[J]. Applied Soft Computing, 2007, 7(4): 1227-1233. doi: 10.1016/j.asoc.2006.01.010.
    JOSHI B P and KUMAR S. Intuitionistic fuzzy sets based method for fuzzy time series forecasting[J]. Cybernetics and Systems: An International Journal, 2012, 43(1): 34-47. doi: 10.1080/01969722.2012.637014.
    郑寇全, 雷英杰, 王睿, 等. 直觉模糊时间序列建模及应用[J]. 控制与决策, 2013, 28(10): 1525-1530.
    ZHENG Kouquan, LEI Yingjie, WANG Rui, et al. Modeling and application of IFTS[J]. Control and Decision, 2013, 28(10): 1525-1530.
    郑寇全, 雷英杰, 王睿, 等.参数自适应的长期IFTS预测算法[J]. 系统工程与电子技术, 2014, 36(1): 99-104. doi: 10.3969/ j.issn.1001-506X.2014.01.16.
    ZHENG Kouquan, LEI Yingjie, WANG Rui, et al. Method of long-term IFTS forecasting based on parameter adaption[J]. Systems Engineering and Electronics, 2014, 36(1): 99-104. doi: 10.3969/j.issn.1001-506X.2014.01.16.
    梁保松, 曹殿立. 模糊数学极其应用[M]. 北京: 科学出版社, 2007: 65-85.
    LIANG Baosong and CAO Dianli. Fuzzy Mathematics and Applications[M]. Beijing: Science Press, 2007: 65-85.
    雷英杰, 赵杰, 路艳丽, 等. 直觉模糊集理论及应用[M]. 北京: 科学出版社, 2014: 28-189.
    LEI Yingjie, ZHAO Jie, LU Yanli, et al. Theories and Applications of Intuitionistic Fuzzy Set[M]. Beijing: Science Press, 2014: 28-189.
    WANG Yanan, LEI Yingjie, FAN Xiaoshi, et al. Intuitionistic fuzzy time series forecasting model based on intuitionistic fuzzy reasoning[J]. Mathematical Problems in Engineering, 2016(2016): 1-12. doi: 10.1155/2016/5035160.
  • 加载中
计量
  • 文章访问数:  1200
  • HTML全文浏览量:  106
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-04
  • 修回日期:  2016-05-26
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回