SHANNON C E. A mathematical theory of communi- cation[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55.
|
MACKAY D J C and NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32(18): 1645-1646.
|
GALLAGER R G. Low-density parity-check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
|
HOCEVAR, D. A reduced complexity decoder architecture via layered decoding of LDPC codes[C]. IEEE Workshop on Signal Processing Systems (SIPS), Austin, TX, USA, 2004: 107-112.
|
ZHANG Xinmiao and TAI Ying. High-speed multi-block-row layered decoding for Quasi-cyclic LDPC codes[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 2014: 11-14.
|
ZHANG J and FOSSORIER M. Shuffled belief propagation decoding[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2002, 1: 8-15.
|
WU Sheng, JIANG Xiaobo, and NIE Zhenghua. Alternate iteration of shuffled belief propagation decoding[C]. International Conference on Communications and Mobile Computing (CMC), Shenzhen, China, 2010, 2: 278-281.
|
LAOUINI N, BEN Hadj Slama L, and BOUALLEGUE A. An optimized min-sum variable node layering for LDPC decoding[C]. International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 2014: 794-799.
|
SUN Yang and CAVALLARO J R. VLSI architecture for layered decoding of QC-LDPC codes with high circulant weight[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21(10): 1960-1964.
|
ASLAM C A, GUAN Yongliang, and CAI Kui. Improving the belief-propagation convergence of irregular LDPC codes using column-weight based scheduling[J]. IEEE Communi- cations Letters, 2015, 19(8): 1283-1286.
|
LIU Xingcheng, ZHANG Yuanbin, and RU Cui. Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19(2): 147-150.
|
LI Jia, YANG Gaigai, and ZHAO Zhiqiang. An improved-performance decoding algorithm of LDPC codes for layered decoding[C]. IEEE International Conference on Communication Problem-Solving (ICCP), Beijing, China, 2014: 318-321.
|
HAGENAUER J, OFFER E, and PAPKE L. Iterative decoding of binary block and convolutional codes[J]. IEEE Transactions on Information Theory, 1996, 42(2): 429-445.
|
CHUNG Saeyoung, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657-670.
|
RICHARDSON T J, SHOKROLLAHI M A, and URBANKE R L. Design of capacity-approaching irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 619-637.
|
ZHANG Yi and DA Xinyu. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight[J]. Electronics Letters, 2015, 51(16): 1257-1259.
|
JIANG Xueqin, XIA Xianggen, and LEE Moonho. Efficient progressive edge-growth algorithm based on Chinese remainder rheorem[J]. IEEE Transactions on Communi- cations, 2014, 62(2): 442-451.
|