高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种交叠的Shuffled-BP LDPC译码算法

范亚楠 王丽冲 姚秀娟 孟新

范亚楠, 王丽冲, 姚秀娟, 孟新. 一种交叠的Shuffled-BP LDPC译码算法[J]. 电子与信息学报, 2016, 38(11): 2908-2915. doi: 10.11999/JEIT151477
引用本文: 范亚楠, 王丽冲, 姚秀娟, 孟新. 一种交叠的Shuffled-BP LDPC译码算法[J]. 电子与信息学报, 2016, 38(11): 2908-2915. doi: 10.11999/JEIT151477
FAN Yanan, WANG Lichong, YAO Xiujuan, MENG Xin. An Overlapped Shuffled-BP LDPC Decoding Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2908-2915. doi: 10.11999/JEIT151477
Citation: FAN Yanan, WANG Lichong, YAO Xiujuan, MENG Xin. An Overlapped Shuffled-BP LDPC Decoding Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2908-2915. doi: 10.11999/JEIT151477

一种交叠的Shuffled-BP LDPC译码算法

doi: 10.11999/JEIT151477
基金项目: 

中国科学院创新基金(CXJJ14S126)

An Overlapped Shuffled-BP LDPC Decoding Algorithm

Funds: 

CAS Innovation Foundation (CXJJ14S126)

  • 摘要: Shuffled-BP(SBP)译码算法是一种基于变量节点的串行消息传递译码算法,其收敛速度快于原有的置信度传播译码算法,然而由于实际工程实现中的半并行化处理,其收敛速度和误码性能均有所降低。为了进一步提高SBP算法的性能,该文提出一种交叠的Shuffled-BP(Overlapped Shuffled-BP, OSBP)译码算法。该算法采用若干个相同的子译码器以不同的更新顺序同时进行更新,对于每个变量节点,在每次迭代更新后选取最可靠的信息参与下一次迭代,以此提高迭代的收敛速度。理论分析和仿真实验均表明,在不增加额外存储空间的条件下,OSBP算法相比于SBP算法有着更优的误码性能以及更快的收敛速度。此外,提出的OSBP算法对于规则和不规则LDPC码均有效。
  • SHANNON C E. A mathematical theory of communi- cation[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55.
    MACKAY D J C and NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32(18): 1645-1646.
    GALLAGER R G. Low-density parity-check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
    HOCEVAR, D. A reduced complexity decoder architecture via layered decoding of LDPC codes[C]. IEEE Workshop on Signal Processing Systems (SIPS), Austin, TX, USA, 2004: 107-112.
    ZHANG Xinmiao and TAI Ying. High-speed multi-block-row layered decoding for Quasi-cyclic LDPC codes[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 2014: 11-14.
    ZHANG J and FOSSORIER M. Shuffled belief propagation decoding[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2002, 1: 8-15.
    WU Sheng, JIANG Xiaobo, and NIE Zhenghua. Alternate iteration of shuffled belief propagation decoding[C]. International Conference on Communications and Mobile Computing (CMC), Shenzhen, China, 2010, 2: 278-281.
    LAOUINI N, BEN Hadj Slama L, and BOUALLEGUE A. An optimized min-sum variable node layering for LDPC decoding[C]. International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 2014: 794-799.
    SUN Yang and CAVALLARO J R. VLSI architecture for layered decoding of QC-LDPC codes with high circulant weight[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21(10): 1960-1964.
    ASLAM C A, GUAN Yongliang, and CAI Kui. Improving the belief-propagation convergence of irregular LDPC codes using column-weight based scheduling[J]. IEEE Communi- cations Letters, 2015, 19(8): 1283-1286.
    LIU Xingcheng, ZHANG Yuanbin, and RU Cui. Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19(2): 147-150.
    LI Jia, YANG Gaigai, and ZHAO Zhiqiang. An improved-performance decoding algorithm of LDPC codes for layered decoding[C]. IEEE International Conference on Communication Problem-Solving (ICCP), Beijing, China, 2014: 318-321.
    HAGENAUER J, OFFER E, and PAPKE L. Iterative decoding of binary block and convolutional codes[J]. IEEE Transactions on Information Theory, 1996, 42(2): 429-445.
    CHUNG Saeyoung, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657-670.
    RICHARDSON T J, SHOKROLLAHI M A, and URBANKE R L. Design of capacity-approaching irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 619-637.
    ZHANG Yi and DA Xinyu. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight[J]. Electronics Letters, 2015, 51(16): 1257-1259.
    JIANG Xueqin, XIA Xianggen, and LEE Moonho. Efficient progressive edge-growth algorithm based on Chinese remainder rheorem[J]. IEEE Transactions on Communi- cations, 2014, 62(2): 442-451.
  • 加载中
计量
  • 文章访问数:  1456
  • HTML全文浏览量:  111
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 修回日期:  2016-06-03
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回