高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合匹配追踪算法的MIMO雷达稀疏成像方法

王伟 张斌 李欣

王伟, 张斌, 李欣. 基于混合匹配追踪算法的MIMO雷达稀疏成像方法[J]. 电子与信息学报, 2016, 38(10): 2415-2422. doi: 10.11999/JEIT151453
引用本文: 王伟, 张斌, 李欣. 基于混合匹配追踪算法的MIMO雷达稀疏成像方法[J]. 电子与信息学报, 2016, 38(10): 2415-2422. doi: 10.11999/JEIT151453
WANG Wei, ZHANG Bin, LI Xin. An Imaging Method for MIMO Radar Based on Hybrid Matching Pursuit[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2415-2422. doi: 10.11999/JEIT151453
Citation: WANG Wei, ZHANG Bin, LI Xin. An Imaging Method for MIMO Radar Based on Hybrid Matching Pursuit[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2415-2422. doi: 10.11999/JEIT151453

基于混合匹配追踪算法的MIMO雷达稀疏成像方法

doi: 10.11999/JEIT151453
基金项目: 

国家自然科学基金(61571148),中国博士后特别资助(2015T80328),中国博士后科学基金(2014M550182),黑龙江省博士后特别资助(LBH-TZ0410),哈尔滨市科技创新人才专项(2013RFXXJ016)

An Imaging Method for MIMO Radar Based on Hybrid Matching Pursuit

Funds: 

The National Natural Science Foundation of China (61571148), China Postdoctoral Special Funding (2015T80328), China Postdoctoral Science Foundation (2014M550182), Heilongjiang Province Postdoctoral Special Fund (LBH-TZ0410), Innovation of Science, Technology Talents in Harbin (2013RFXXJ016)

  • 摘要: 多输入多输出(MIMO)雷达作为一种新型的雷达体制,其成像兼具高分辨率与实时性的优点。由于观测区域的稀疏性,MIMO雷达成像可以用压缩感知的方法进行处理。而现有的MIMO雷达稀疏成像的贪婪恢复算法中,正交匹配追踪算法(OMP)存在成像图像有伪影的缺点,子空间追踪算法(SP)则受到低分辨率的困扰。针对上述问题,该文提出一种称为混合匹配追踪算法的压缩感知贪婪算法以实现MIMO雷达稀疏成像。通过将两种贪婪恢复算法结合起来,利用OMP 算法选择基信号的正交性和SP 算法具有基信号选择的回溯策略,来重构出高分辨率且没有伪影的雷达图像。仿真实验验证了所提算法的有效性。
  • FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: an idea whose time has come[C]. IEEE Radar Conference, Philadelphia, PA, USA, 2004: 71-78.
    刘涛. MIMO雷达技术及其应用研究[J]. 无线互联科技, 2015, 6(12): 136-137. doi: 10.3969/j.issn.1672-6944.2015.12.064.
    LIU Tao. Research on MIMO radar technology and its application[J]. Wireless Internet Technology, 2015, 6(12): 136-137. doi: 10.3969/j.issn.1672-6944.2015.12.064.
    BLISS D W and FORSYTHE K W. MIMO radar medical imaging: Self-interference mitigation for breast tumor detection[C]. The 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2006: 1558-1562. doi: 10.1109/ACSSC.2006.355020.
    王伟, 马跃华, 王咸鹏. 一种高运算效率的MIMO雷达BP成像算法[J]. 系统工程与电子技术, 2013, 35(10): 2080-2085.
    WANG Wei, MA Yuehua, and WANG Xianpeng. High computation effciency BP imaging algorithm for MIMO radar[J]. Systems Engineering and Electronics, 2013, 35(10): 2080-2085.
    ZHUGE X D, YAROVOY A G, SAVELYEV T, et al. Modified Kirchhoff migration for UWB MIMO array-based radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2692-2703. doi: 10.1109/TGRS.2010. 2040747.
    OGIWARA S and YAMAKOSHI Y. MIMO radar system for respiratory monitoring using Tx and Rx modulation with M-sequence codes[J]. IEICE Transactions on Communications, 2010, 93(9): 2416-2423. doi: 10.1587/ transcom.E93.B.2416.
    BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Boston, MA, USA, 2007: 128-133. doi: 10.1109/RADAR.2007.374203.
    杨杰, 廖桂生, 李军. 基于波形选择的MIMO雷达三维稀疏成像与角度误差校正方法[J]. 电子与信息学报. 2014, 36(2): 428-434. doi: 10.3724/SP.J.1146.2013.00500.
    YANG Jie, LIAO Guisheng, and LI Jun. Three dimensional MIMO radar imaging using sparse model based on Waveform Selection and Calibration Method in the Presence of Angle Imperfections[J]. Journal of Electronics Information Technology, 2014, 36(2): 428-434. doi: 10.3724/SP.J.1146. 2013.00500.
    丁丽. MIMO雷达稀疏成像的失配问题研究[D]. [博士论文], 中国科学技术大学, 2014.
    DING Li. Ressearch on observation matrix mismatch for MIMO radar sparse imaging[D]. [Ph.D. dissertation], University of Science and Technology of China, 2014.
    WILLIAM R, PETRE S, LI J, et al. Iterative adaptive approaches to MIMO radar imaing[J]. IEEE Journal of Selected Thopics in Signal Processing, 2010, 4(1): 5-20. doi: 10.1109/JSTSP.2009.2038964.
    TAN X, ROVERTS W, LI J, et al. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2010, 59(3): 1088-1101. doi: 10.1109/TSP.2010.2096218.
    王伟, 马跃华, 郝燕玲. 基于MAPC-RISR的MIMO雷达距离-角度二位超分辨率成像算法[J]. 中国科学: 信息科学, 2015, 45(3): 372-384. doi: 10.1360/N112014-00044.
    WANG Wei, MA Yuehua, and HAO Yanling. High-resolution MIMO radar range-angle 2D imaging algorithm based on MAPC-RISR[J]. Scientia Sinica Informationis, 2015, 45(3): 372-384. doi: 10.1360/N112014-00044.
    HIGGINS T, BLUNT S D, SHACKELFORD A K, et al. Space-range adaptive processing for waveform-diverse radar imaging[C]. IEEE Radar Conference, Arlington, VA, USA, 2010: 321-326. doi: 10.1109/RADAR.2010.5494604.
    HUANG Q, QU L, WU B, et al. UWB through-wall imaging based on compressive sensing[J]. IEEE Traqnsactions on Geoscience and Reomote Sensing, 2010, 48(3): 1408-1415. doi: 10.1109/TGRS.2009.2030321.
    TANG V H, Bouzerdoum A, Phung S L, et al. Enhanced through-the-wall radar imaging using Bayesian compressive sensing[C]. SPIE, 2013, 8717: 1-12. doi: 10.1117/12.2014814.
    WU Q, ZHANG Y D, AMIN M G, et al. Through-the-wall radar imaging based on modified Bayesian compressive sensing[C]. IEEE China Summit Internation Conference on Signal Information Process, Xian, China, 2014: 232-236. doi: 10. 1109/ChinaSIP.2014.6889238.
    WU Q, ZHANG Y D, AMIN M G, et al. Multi-static passive SAR imaging based on Bayesian compressive sensing[C]. SPIE Compressive Sensing Conference, Valtimore, MD, USA, 2014: 9109. doi: 10.1117/12.2050524.
    庄燕滨, 王尊志, 肖贤建. 基于最大后验概率估计的压缩感知算法[J]. 计算机科学, 2015, 42(11): 279-283.
    ZHUANG Yanbin, WANG Zunzhi, and XIAO Xianjian. Reconstruction algorithm in compressed sensing based on maximum posterior estimation[J]. Computer Science, 2015, 42(11): 279-283.
    PATI Y C, REZAIIFAR R, KRISHNAPREASAD P S, et al. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition [C]. 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1993: 40-44.
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    晋良念, 钱玉彬, 申文亭. 基于改进OMP的超宽带穿墙雷达稀疏成像方法[J]. 计算机技术与应用, 2015, 41(11): 135-139.
    JIN Liangnian, QIAN Yubin, and SHEN Wenting. Sparse imaging for ultra-wideband through-the-wall radar based on modified OMP algorithm[J]. Computer Technology and Its Application, 2015, 41(11): 135-139.
    DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006.
    HE H, STOICA P, LI J, et al. Designing unimodular sequence sets with good correlations-including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391-4405. doi: 10.1109/TSP.2009.2025108.
    甘伟, 许录平, 张华, 等. 一种贪婪自适应压缩感知重构[J]. 西安电子科技大学学报, 2012, 39(3): 50-57.
    GAN Wei, XU Luping, ZHANG Hua, et al. Greedy adaptive recovery algorithm for compressed sensing[J]. Journal of Xidian University, 2012, 39(3): 50-57.
    刘盼盼, 李雷. 王浩宇. 压缩感知中基于变尺度法的贪婪重构算法的研究[J]. 通信学报, 2014, 35(12): 98-115.
    LIU Panpan, LI Lei, and WANG Haoyu. Research on gredddy reconstruction algorithms of compressed sensing based on variable metric method[J]. Journal on Communications, 2014, 35(12): 98-115.
  • 加载中
计量
  • 文章访问数:  1842
  • HTML全文浏览量:  195
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-22
  • 修回日期:  2016-06-17
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回