高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于感知深度神经网络的视觉跟踪

侯志强 戴铂 胡丹 余旺盛 陈晨 范舜奕

侯志强, 戴铂, 胡丹, 余旺盛, 陈晨, 范舜奕. 基于感知深度神经网络的视觉跟踪[J]. 电子与信息学报, 2016, 38(7): 1616-1623. doi: 10.11999/JEIT151449
引用本文: 侯志强, 戴铂, 胡丹, 余旺盛, 陈晨, 范舜奕. 基于感知深度神经网络的视觉跟踪[J]. 电子与信息学报, 2016, 38(7): 1616-1623. doi: 10.11999/JEIT151449
HOU Zhiqiang, DAI Bo, HU Dan, YU Wangsheng, CHEN Chen, FAN Shunyi. Robust Visual Tracking via Perceptive Deep Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1616-1623. doi: 10.11999/JEIT151449
Citation: HOU Zhiqiang, DAI Bo, HU Dan, YU Wangsheng, CHEN Chen, FAN Shunyi. Robust Visual Tracking via Perceptive Deep Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1616-1623. doi: 10.11999/JEIT151449

基于感知深度神经网络的视觉跟踪

doi: 10.11999/JEIT151449
基金项目: 

国家自然科学基金(61175029, 61473309),陕西省自然科学基金(2015JM6269,2015JM6269,2016JM6050)

Robust Visual Tracking via Perceptive Deep Neural Network

Funds: 

The National Natural Science Foundation of China (61175029, 61473309), The Natural Science Foundation of Shaanxi Province (2015JM6269, 2015JM6269, 2016JM6050)

  • 摘要: 视觉跟踪系统中,高效的特征表达是决定跟踪鲁棒性的关键,而多线索融合是解决复杂跟踪问题的有效手段。该文首先提出一种基于多网络并行、自适应触发的感知深度神经网络;然后,建立一个基于深度学习的、多线索融合的分块目标模型。目标分块的实现成倍地减少了网络输入的维度,从而大幅降低了网络训练时的计算复杂度;在跟踪过程中,模型能够根据各子块的置信度动态调整权重,提高对目标姿态变化、光照变化、遮挡等复杂情况的适应性。在大量的测试数据上进行了实验,通过对跟踪结果进行定性和定量分析表明,所提出算法具有很强的鲁棒性,能够比较稳定地跟踪目标。
  • 侯志强, 韩崇昭. 视觉跟踪技术综述[J]. 自动化学报, 2006, 32(4): 603-617.
    HOU Zhiqiang and HAN Chongzhao. A Survey of visual tracking[J]. Acta Automatica Sinica, 2006, 32(4): 603-617.
    WANG Naiyan, SHI Jianping, YEUNG Dityan, et al. Understanding and diagnosing visual tracking systems[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 11-18.
    BABENKO B, YANG M, and BELONGIE S. Visual tracking with online multiple instance learning[C]. International Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 983-990. doi: 10.1109/CVPR.2009. 5206737.
    KALAL Z, MIKOLAJCZYK K, and MATAS J. Tracking learning detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. doi: 10.1109/TPAMI.2011.239.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 1026-1034.
    COURBARIAUX M, BENGIO Y, and DAVID J P. Binary Connect: training deep neural networks with binary weights during propagations[C]. Advances in Neural Information Processing Systems, Montral, Quebec, Canada, 2015: 3105-3113.
    SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional, long short term memory, fully connected deep neural networks[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 4580-4584. doi: 10.1109/ICASSP.2015.7178838.
    PARKHI O M, VEDALDI A, and ZISSERMAN A. Deep face recognition[J]. Proceedings of the British Machine Vision, 2015, 1(3): 6.
    WANG Naiyan and YEUNG Dityan. Learning a deep compact image representation for visual tracking[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, USA, 2013: 809-817.
    李寰宇, 毕笃彦, 杨源, 等. 基于深度特征表达与学习的视觉跟踪算法研究[J]. 电子与信息学报, 2015, 37(9): 2033-2039.
    LI Huanyu, BI Duyan, YANG Yuan, et al. Research on visual tracking algorithm based on deep feature expression and learning[J]. Journal of Electronics Information Technology, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031.
    RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/ s11263-015-0816-y.
    VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(11): 3371-3408.
    HINTON G E and SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. International Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 2006: 798-805. doi: 10.1109/CVPR.2006.256.
    JULIER S J and UHLM J U. Unscented filtering and nonlinear estimation[J]. Proceedings of IEEE, 2004, 192(3): 401-422. doi: 10.1109/JPROC.2003.823141.
    YILMAZ A, JAVED O, and SHAH M. Object tracking: a survey[J]. ACM Computer Survey, 2006, 38(4): 1-45.
    NICKEL K and STIEFELHAGEN R. Dynamic integration of generalized cues for person tracking[C]. European Conference on Computer Vision, Marseille, France, 2008: 514-526. doi: 10.1007/978-3-540-88693-8_38.
    SPENGLER M and SCHIELE B. Towards robust multi-cue integration for visual tracking[J]. Machine Vision and Applications, 2003, 14(1): 50-58. doi: 10.1007/s00138-002- 0095-9.
    WU Yi, LIM Jongwoo, and YANG Minghsuan. Online object tracking: a benchmark[C]. International Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 2411-2418.
    ZHANG Kaihua, ZHANG Lei, and YANG Minghsuan. Real-time compressive tracking[C]. European Conference on Computer Vision, Florence, Italy, 2012: 866-879. doi: 10.1007/978-3-642-33712-3_62.
    SEVILLA-LARA L and LEARNED-MILLER E. Distribution fields for tracking[C]. International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 1910-1917. doi: 10.1109/CVPR.2012.6247891.
    LI Hanxi, LI Yi, and PORIKLI Fatih. Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, UK, 2014: 110-119. doi: 10.1109/TIP.2015.2510583.
  • 加载中
计量
  • 文章访问数:  1812
  • HTML全文浏览量:  111
  • PDF下载量:  944
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-22
  • 修回日期:  2016-05-04
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回