高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩

高放 孙长建 邵庆龙 郭树旭

高放, 孙长建, 邵庆龙, 郭树旭. 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439
引用本文: 高放, 孙长建, 邵庆龙, 郭树旭. 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439
GAO Fang, SUN Changjian, SHAO Qinglong, GUO Shuxu. Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439
Citation: GAO Fang, SUN Changjian, SHAO Qinglong, GUO Shuxu. Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439

基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩

doi: 10.11999/JEIT151439
基金项目: 

国家自然科学基金(41101419)

Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor

Funds: 

The National Natural Science Foundation of China (41101419)

  • 摘要: 针对基于预测的高光谱图像无损压缩算法压缩比低的问题,该文将聚类算法与高光谱图像预测压缩算法相结合,提出一种基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩算法。首先,对高光谱图像按光谱矢量进行K-均值聚类以提升同类光谱矢量间的相似度。然后,对每一聚类群分别使用传统递归最小二乘法进行预测,消除高光谱图像的空间冗余和谱间冗余。最后,对预测误差图像进行算术编码,完成高光谱图像压缩过程。对AVIRIS 2006高光谱数据进行仿真实验,所提算法对16位校正图像、16位未校正图像和12位未校正图像分别取得了4.63倍,2.82倍和4.77倍的压缩比,优于同类型已报道的各种算法。
  • MIELIKAINEN J. Lossless compression of hyperspectral images using lookup tables[J]. IEEE Signal Processing Letters, 2006, 13(3): 157-160. doi: 10.1109/LSP.2005.862604.
    HUANG B and SRIRAJA Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection[C]. Conference on Image and Signal Processing for Remote Sensing XII, Stockholm, Sweden, 2006: 63650L.1- 63650L.8. doi: 10.1117/12.690659.
    MIELIKAINEN J and TOIVANEN P. Lossless compression of hyperspectral images using a quantized index to lookup tables[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 474-478. doi: 10.1109/LGRS.2008.917598.
    KLIMESH K. Low-complexity adaptive lossless compression of hyperspectral imagery[C]. Conference on Satellite Data Compression, Communications, and Archiving II, San Diego, USA, 2006: 63000N-1-63000N-9. doi: 10.1117/12.682624.
    LIN Chengchen and HWANG Yintsung. An efficient lossless compression scheme for hyperspectral images using two-stage prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 558-562. doi: 10.1109/LGRS.2010.2041630.
    SONG Jinwei, ZHANG Zhongwei, and CHEN Xiaomin. Lossless compression of hyperspectral imagery via RLS filter[J]. Electronics Letters, 2013, 49(16): 992-993. doi: 10.1049/el.2013.1315.
    ABRARDO A, BARNI M, MAGLI E, et al. Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1892-1904. doi: 10.1109/TGRS.2009.2033470.
    RIZZO F, CARPENTIERI B, MOTTA G, et al. Low- complexity lossless compression of hyperspectral imagery via linear prediction[J]. IEEE Signal Processing Letters, 2005, 12(2): 138-141. doi: 10.1109/LSP.2004.840907(410).
    MAGLI E. Multiband lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1168-1178. doi: 10.1109/TGRS. 2008.2009316.
    MIELIKAINEN J and TOIVANEN P. Clustered DPCM for the lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2943-2946. doi: 10.1109/TGRS.2003.820885.
    AIAZZI B, ALPARONE L, BARONTI S, et al. Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 532-536. doi: 10.1109/LGRS.2007.900695.
    WU Jiaji, KONG Wanqiu, MIELIKAINEN J, et al. Lossless compression of hyperspectral imagery via clustered differential pulse code modulation with removal of local spectral outliers[J]. IEEE Signal Processing Letters, 2015, 22(12): 2194-2198. doi: 10.1109/LSP.2015.2443913.
    ULKU I and TOREYIN B U. Sparse representations for online-learning-based hyperspectral image compression[J]. Applied Optics, 2015, 54(29): 8625-8631. doi: 10.1364/AO.54.008625.
    WANG Lei, BAI Jing, WU Jiaji, et al. Hyperspectral image compression based on lapped transform and Tucker decomposition[J]. Signal Processing: Image Communication, 2015, 36: 63-69. doi: 10.1016/j.image.2015.06.002.
    BEERTEN J, BLANES I, and SERRA-SAGRISTA J. A fully embedded two-stage coder for hyperspectral near-lossless compression[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1775-1779. doi: 10.1109/LGRS.2015.2425548.
    LEE C, YOUN S, JEONG T, et al. Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1491-1495. doi: 10.1109/LGRS. 2015.2409897.
    ZHAO Chunhui, LI Xiaohui, REN Jinchang, et al. A novel framework for object-based coding and compression of hyperspectral imagery[J]. Chinese Journal of Electronics, 2015, 24(2): 300-305. doi: 10.1049/cje.2015.04.012.
    NIAN Yongjian, HE Mi, and WAN Jianwei. Lossless and near-lossless compression of hyperspectral images based on distributed source coding[J]. Journal of Visual Communication and Image Representation, 2015, 28: 113-119. doi: 10.1016/j.jvcir.2014.06.008.
    ZHANG Lefei, ZHANG Liangpei, TAO Dacheng, et al. Compression of hyperspectral remote sensing images by tensor approach[J]. Neurocomputing, 2015, 147(1): 358-363. doi: 10.1016/j.neucom.2014.06.052.
    HUANG Bingchao, NIAN Yongjian, and WAN Jianwei. Distributed lossless compression algorithm for hyperspectral images based on classification[J]. Spectroscopy Letters, 2015, 48(7): 528-535. doi: 10.1080/00387010.2014.920888.
    JAIN A K. Data clustering: 50 years beyond k-means[C]. 19th International Conference on Pattern Recognition, Tampa, USA, 2010: 651-666.
    DINIZ P S R. Adaptive Filtering: Algorithms and Practical Implementation[M]. New York, Springer, 2012: 195-227.
    MOFFAT A, NEAL R, and WITTEN I H. Arithmetic coding revisited[C]. Data Compression Conference, Snowbird, USA, 1995: 202-211.
  • 加载中
计量
  • 文章访问数:  1878
  • HTML全文浏览量:  151
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-22
  • 修回日期:  2016-04-08
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回