高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种广义主成分提取算法及其收敛性分析

高迎彬 孔祥玉 胡昌华 张会会 侯立安

高迎彬, 孔祥玉, 胡昌华, 张会会, 侯立安. 一种广义主成分提取算法及其收敛性分析[J]. 电子与信息学报, 2016, 38(10): 2531-2537. doi: 10.11999/JEIT151433
引用本文: 高迎彬, 孔祥玉, 胡昌华, 张会会, 侯立安. 一种广义主成分提取算法及其收敛性分析[J]. 电子与信息学报, 2016, 38(10): 2531-2537. doi: 10.11999/JEIT151433
GAO Yingbin, KONG Xiangyu, HU Changhua, ZHANG Huihui, HOU Li’an. A Generalized Principal Component Extraction Algorithm and Its Convergence Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2531-2537. doi: 10.11999/JEIT151433
Citation: GAO Yingbin, KONG Xiangyu, HU Changhua, ZHANG Huihui, HOU Li’an. A Generalized Principal Component Extraction Algorithm and Its Convergence Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2531-2537. doi: 10.11999/JEIT151433

一种广义主成分提取算法及其收敛性分析

doi: 10.11999/JEIT151433
基金项目: 

国家自然科学基金面上项目(61074072, 61374120),国家杰出青年基金(61025014)

A Generalized Principal Component Extraction Algorithm and Its Convergence Analysis

Funds: 

The National Natural Science Foundation of China (61074072, 61374120), The National Science Fund for Distinguished Youth Scholars (61025014)

  • 摘要: 广义主成分分析在现代信号处理的诸多领域发挥着重要的作用。目前,自适应广义主成分分析算法还并不多见。针对这一现状,该文提出一种快速收敛的广义主成分分析算法,并通过理论分析所提算法的确定性离散时间系统,导出了保证算法收敛的学习因子和初始权向量模值等边界条件。仿真实验和实际应用验证了所提算法的正确性和有用性。仿真结果还表明,所提算法比现有同类算法具有更快的收敛速度和更高的估计精度。
  • 谢荣, 刘峥, 刘俊. 基于矩阵束的MIMO雷达低仰角快速估计方法[J]. 电子与信息学报, 2011, 33(8): 1833-1838. doi: 10.3724/SP.J.1146.2010.01242.
    XIE Rong, LIU Zheng, and LIU Jun. Fast algorithm for low elevation estimation based on matrix pencil in MIMO radar[J]. Journal of Electronics Information Technology, 2011, 33(8): 1833-1838. doi: 10.3724/SP.J.1146.2010.01242.
    蔡振浩, 赵昆, 陈文. TD-LTE-A 系统下行多用户CoMP 联合预编码算法[J]. 北京邮电大学学报, 2015, 38(1): 67-70.
    CAI Zhenhao, ZHAO Kun, and CHEN Wen. Research on CoMP joint transmission for downlink MU-MIMO in TD-LTE-A[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(1): 67-70.
    ANA Maria Tom. The generalized eigen-decomposition approach to the blind source separation problem[J]. Digital Signal Processing, 2006, 16: 288-302.
    ZHANG Weitao, LOU Shuntian, and FENG Dazheng. Adaptive quasi-newton algorithm for source extraction via CCA approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 677-689.
    WANG Shougen and ZHAO Shuqin. An algorithm for Ax = Bx with symmetric and positive-definite A and B[J]. SIAM Journal on Matrix Analysis and Applications, 1991, 12(4): 654-660.
    YANG Jian, XI Hongsheng, and YANG Feng. RLS-based adaptive algorithms for generalized eigen-decomposition[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1177-1188.
    YANG Jian, HU Han, and XI Hongsheng. Weighted non-linear criterion-based adaptive generalised eigen decomposition[J]. IET Signal Processing, 2013, 7(4): 285-295.
    Tuan Duong Nguyen and Isao Yamada. Adaptive normalized quasi-Newton algorithms for extraction of generalized eigen-pairs and their convergence analysis[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1404-1418.
    MLLER R. A self-stabilizing learning rule for minor component analysis[J]. International Journal of Neural Systems, 2004, 14(1): 1-8.
    ZUFIRIA P J. On the discrete-time dynamics of the basic Hebbian neural-network node[J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1342-1352.
    GAO Yingbin, KONG Xiangyu, HU Changhua, et al. Convergence analysis of mller algorithm for estimating minor component[J]. Neural Processing Letters, 2015, 42(2): 355-368.
    Tuan Duong Nguyen and IsaoYamada. Necessary and sufficient conditions for convergence of the DDT systems of the normalized PAST algorithms[J]. Signal Processing, 2014, 94: 288-299.
    ATTALLAH S and ABED-MERAIM K. A fast adaptive algorithm for the generalized symmetric eigenvalue problem[J]. IEEE Signal Processing Letters, 2008, 15: 797-800.
  • 加载中
计量
  • 文章访问数:  1481
  • HTML全文浏览量:  132
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-05-10
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回