高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高维度特征分析的非局部图像质量评价方法

丁勇 李楠

丁勇, 李楠. 基于高维度特征分析的非局部图像质量评价方法[J]. 电子与信息学报, 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430
引用本文: 丁勇, 李楠. 基于高维度特征分析的非局部图像质量评价方法[J]. 电子与信息学报, 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430
DING Yong, LI Nan. Image Quality Assessment Based on Non-localHigh Dimensional Feature Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430
Citation: DING Yong, LI Nan. Image Quality Assessment Based on Non-localHigh Dimensional Feature Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430

基于高维度特征分析的非局部图像质量评价方法

doi: 10.11999/JEIT151430
基金项目: 

国家863计划(2015AA016704c),浙江省自然科学基金(LY14F020028)

Image Quality Assessment Based on Non-localHigh Dimensional Feature Analysis

Funds: 

Items: The National 863 Program of China (2015AA016704c), Zhejiang Provincial Natural Science Foundation (LY14F020028)

  • 摘要: 传统的图像质量评价方法通常提取低维度特征即图像的片面信息用来分析图像质量。高维度特征尽管不易分析但保留了更多信息,更利于全面分析图像质量。针对这种现状,该文提出一种优化数据采样后基于高维度特征分析的图像质量评价方法。首先对图像数据采样分别利用块匹配进行筛选,用主成分分析进行降维,其次利用核独立分量分析从图像数据采样中提取高维度特征,最后基于自然图像统计特性对特征进行综合得出图像质量。实验结果表明所提方法与人的主观评价较为一致。
  • HE L, GAO F, HOU W, et al. Objective image quality assessment: A survey[J]. International Journal of Computer Mathematics, 2014, 91(11): 2374-2388. doi: 10.1080/ 00207160.2013.816415.
    WANG Zand BOVIK A C. Reduced-and no-reference image quality assessment[J]. IEEE Signal Processing Magazine, 2011, 28(6): 29-40. doi: 10.1109/MSP.2011.942471.
    HU A, ZHANG R, YIN D, et al. Image quality assessment using a SVD-based structural projection[J]. Signal Processing: Image Communication, 2014, 29(3): 293-302. doi: 10.1016/ j.image.2014.01.007.
    HYVARINEN A, HURRI J, and HOYER P O. Natural Image Statistics: A Probabilistic Approach to Early Computational Vision[M]. US, Springer Science Business Media, 2009, Chap 4. doi: 10.1007/978-1-84882-491-1.
    HORE A and ZIOU D. Image quality metrics: PSNR vs. SSIM[C]. 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 2010: 2366-2369. doi: 10.1109/ICPR.2010.579.
    GAO X, LU W, LI X, et al. Wavelet-based contourlet in quality evaluation of digital images[J]. Neurocomputing, 2008, 72(1): 378-385. doi: 10.1016/j.neucom.2007.12.031.
    DING Y, DAI H, and WANG S. Image quality assessment scheme with topographic independent components analysis for sparse feature extraction[J]. Electronics Letters, 2014, 50(7): 509-510. doi: 10.1049/el.2013.4298.
    LUO C, WANG Y, DING Y, et al. Image quality assessment based on independent component analysis[C]. IEEE 2014 12th International Conference on. Signal Processing (ICSP), Hangzhou, China, 2014: 922-927. doi: 10.1109/ICOSP.2014. 7015139.
    MANIKANDAN L C and SELVAKUMAR R K. A new survey on block matching algorithms in video coding[J]. International Journal of Engineering Research, 2014, 3(2): 121-125.
    ZHONG H, MA K, and ZHOU Y. Modified BM3D algorithm for image denoising using nonlocal centralization prior[J]. Signal Processing, 2015, 106: 342-347. doi: 10.1016/ j.sigpro.2014.08.014.
    SHLENS J. A tutorial on principal component analysis[J]. Eprint Arxiv, 2014, 58(3): 219-226.
    ABDI H and WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. doi: 10.1002/wics.101.
    BACH F R and JORSAN M I. Kernel independent component analysis[J]. The Journal of Machine Learning Research, 2003, 3: 1-48.
    LIU M and YANG X. Image quality assessment using contourlet transform[J]. Optical Engineering, 2009, 48(10): 107201-10.
  • 加载中
计量
  • 文章访问数:  1263
  • HTML全文浏览量:  141
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-04-19
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回