高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的加速前向后向匹配追踪算法

王锋 孙桂玲 张健平 何静飞

王锋, 孙桂玲, 张健平, 何静飞. 基于压缩感知的加速前向后向匹配追踪算法[J]. 电子与信息学报, 2016, 38(10): 2538-2545. doi: 10.11999/JEIT151422
引用本文: 王锋, 孙桂玲, 张健平, 何静飞. 基于压缩感知的加速前向后向匹配追踪算法[J]. 电子与信息学报, 2016, 38(10): 2538-2545. doi: 10.11999/JEIT151422
WANG Feng, SUN Guiling, ZHANG Jianping, HE Jingfei. Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2538-2545. doi: 10.11999/JEIT151422
Citation: WANG Feng, SUN Guiling, ZHANG Jianping, HE Jingfei. Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2538-2545. doi: 10.11999/JEIT151422

基于压缩感知的加速前向后向匹配追踪算法

doi: 10.11999/JEIT151422
基金项目: 

国家自然科学基金(61171140),高等学校博士学科点专项科研基金(20130031110032)

Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing

Funds: 

The National Natural Science Foundation of China (61171140), The Doctoral Program of Higher Education (20130031110032)

  • 摘要: 前向后向匹配追踪(FBP)算法作为一个新颖的两阶段贪婪逼近算法,因为较高的重构精度和不需要稀疏度作为先验信息的特点,受到了人们的广泛关注。然而,FBP算法必须运行更多的时间才能得到更高的精度。鉴于此,该文提出加速前向后向匹配追踪(AFBP)算法。该算法利用每次迭代中候选支撑集的信息,实现对已删除原子的再次加入,以此减少算法迭代次数。通过不同非零项分布的稀疏信号和稀疏图像的仿真结果表明,相对于FBP算法,该文提出的方案在不降低重构精度的同时,大幅降低了算法运行时间。
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289-1306. doi: 10.1109/TIT.2006.871582.
    CANDS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083.
    李鹏,王建新,曹建农. 无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案[J]. 电子与信息学报, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219.
    LI Peng, WANG Jianxin, and CAO Jiannong. Abnormal event detection scheme based on compressive sensing and GM (1,1) in wireless sensor networks[J]. Journal of Electronics Information Technology, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219.
    蒋明峰, 刘渊, 徐文龙, 等. 基于全变分扩展方法的压缩感知磁共振成像算法研究[J]. 电子与信息学报, 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179.
    JIANG Mingfeng, LIU Yuan, XU Wenlong, et al. The study of compressed sensing MR image reconstruction algorithm based on the extension of total variation method[J]. Journal of Electronics Information Technology, 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179.
    QU X, HOU Y, FAN L, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. doi: 10.1016/j.media.2013.09.007.
    MALLAT S G and ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1994, 41(12): 3397-3415. doi: 10.1109/78.258082.
    TROPP J and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. doi: 10.1109/ TIT.2011.2173241.
    DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006.
    NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. doi: 10.1016/j.acha.2008.07.002.
    DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. 42nd IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008: 581-587. doi: 10.1109/ACSSC.2008.5074472.
    CHATTERJEE S, SUNDMAN D, and SKOGLUND M. Look ahead orthogonal matching pursuit[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 4024-4027. doi: 10.1109/ICASSP.2011.5947235.
    KARAHANOGLU N B and ERDOGAN H. Compressed sensing signal recovery via forward-backward pursuit[J]. Digital Signal Processing, 2013, 23(5): 1539-1548. doi: 10.1016/j.dsp.2013.05.007.
    AMBAT S K and HARI K V S. An iterative framework for sparse signal reconstruction algorithms[J]. Signal Processing, 2015, 108: 351-364. doi: 10.1016/j.sigpro.2014.09.023.
    AMBAT S K, CHATTERJEE S, and HARI K V S. Progressive fusion of reconstruction algorithms for low latency applications in compressed sensing[J]. Signal Processing, 2014, 97(7): 146-151. doi: 10.1016/j.sigpro.2013. 10.019.
    AMBAT S K, CHATTERJEE S, and HARI K V S. A committee machine approach for compressed sensing signal reconstruction[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1705-1717. doi: 10.1109/TSP.2014.2303941.
    DEEPA K G, AMBAT S K, and HARI K V S. Modified greedy pursuits for improving sparse recovery[C]. Twentieth IEEE National Conference on Communications (NCC), Kanpur, 2014: 1-5. doi: 10.1109/NCC.2014.6811370.
  • 加载中
计量
  • 文章访问数:  1652
  • HTML全文浏览量:  147
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-05-05
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回