高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进多重测量向量模型的SAR成像算法

陈一畅 张群 杨婷 罗迎

陈一畅, 张群, 杨婷, 罗迎. 基于改进多重测量向量模型的SAR成像算法[J]. 电子与信息学报, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391
引用本文: 陈一畅, 张群, 杨婷, 罗迎. 基于改进多重测量向量模型的SAR成像算法[J]. 电子与信息学报, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391
CHEN Yichang, ZHANG Qun, YANG Ting, LUO Ying. A Novel SAR Imaging Algorithm Based on Modified Multiple Measurement Vectors Model[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391
Citation: CHEN Yichang, ZHANG Qun, YANG Ting, LUO Ying. A Novel SAR Imaging Algorithm Based on Modified Multiple Measurement Vectors Model[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391

基于改进多重测量向量模型的SAR成像算法

doi: 10.11999/JEIT151391
基金项目: 

国家自然科学基金(61471386),中国博士后基金(2015M570815),陕西省统筹创新工程-特色产业创新链项目(2015KTTSGY04-06)

A Novel SAR Imaging Algorithm Based on Modified Multiple Measurement Vectors Model

Funds: 

The National Natural Science Foundation of China (61471386), The Postdoctoral Science Foundation of China (2015M570815), The Overall Innovation and Characteristic Industry Innovation Chain Project of Shaanxi Province (2015KTTSGY04-06)

  • 摘要: 近年来,基于压缩感知(Compressed Sensing, CS)理论的稀疏场景SAR成像成为研究热点。在CS理论中,对于具有相同稀疏结构的联合稀疏目标信号源,多重测量向量(Multiple Measurement Vectors, MMV)模型可以获得优于单重测量矢量(Single Measurement Vector, SMV)模型的重构性能。然而,在距离徙动(Range Migration)不可忽略的应用场景,SAR各脉冲回波1维距离像具有不完全相同的稀疏结构,这使得无法在SAR应用中直接引入MMV模型。该文针对MMV模型与SAR距离徙动的矛盾,提出一种改进的MMV模型。在该模型下,各方位向位置对应的1维距离像的稀疏结构不要求完全相同,而是符合距离徙动特性。论文所提出的RM-OMP算法根据符合距离徙动特性的稀疏结构搜索稀疏信号支撑集,可以准确地重建稀疏信号源。论文采用仿真数据和实测数据实验验证了所提模型和算法的有效性。
  • JUN Shi, ZHANG Xiaoling, and YANG Jianyu. Principle and methods on bistatic SAR signal processing via time correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3163-3178. doi: 10.1109/TGRS. 2008.920369.
    SHEN Fangfang, ZHAO Guanghui, LIU Zicheng, et al. SAR imaging with structural sparse representation[J]. IEEE Journal of Selected Topocs in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3902-3910. doi: 10.1109/JSTARS.2014.2364294.
    BAMLER R. A comparison of Range-Doppler and wavenumber domain SAR focusing algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706-713. doi: 10.1109/36.158864.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582.
    邱伟, 赵宏钟, 陈建军, 等. 基于平滑范数的高分辨雷达一维成像研究[J]. 电子与信息学报, 2011,33(12): 2869-2874. doi: 10.3724/SP.J.1146.2011.00418.
    QIU Wei, ZHAO Hongzhong, CHEN Jianjun, et al. Highresolution radar one-dimendional imaging based on smoothed norm[J]. Journal of Electronics Information Technology, 2011, 33(12): 2869-2874. doi: 10.3724/SP. J.1146.2011.00418.
    BU Hongxia, TAO Ran, BAI Xia, et al. A novel SAR imaging algorithm based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1003-1007. doi: 10.1106/LGRS.2014.2372319.
    TELLO A M, LOPEZ D P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295. doi: 10.1109/TGRS.2010.2051231.
    ONHON N O and CETIN M. A sparsity driven approach for joint SAR imaging and Phase error correction[J]. IEEE Transactions on Image Processing, 2011, 21(4): 2075-2088. doi: 10.1109/TIP.2011.2179056.
    XIA Linuo, ZHU Daiyin, and JIANG Rui. A research on SAR autofocusing algorithms for compressive sensing technique [C]. IET International Radar Conference, Xi'an, 2013: 1-6.
    GU Fu-fei, ZHANG Qun, CHI Long, et al. A novel motion compensating method for MIMO-SAR imaging based on compressed sensing[J]. IEEE Sensors Journal, 2015, 15(4): 2157-2165. doi: 10.1109/JSEN.2014.2371451.
    CETIN M, STOJANOVIC I, ONHON N O, et al. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27-40. doi: 10.1109/MSP.2014.2312834.
    YANG Jiefang and ZHANG Yunhua. Novel compressive sensing-based Dechirp-Keystone algorithm for synthetic aperture radar imaging of moving target[J]. IET Radar, Sonar Navigation, 2015, 9(5): 509-518. doi: 10.1049/iet-rsn. 2014.0306.
    CHEN J and HUO X. Theoretical results on sparse representations of multiple-measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634-4643. doi: 10.1109/TSP.2006.881263.
    YANG J, BOUZERDOUM A, TIVIVE F H C, et al. Multiple-measurement vector model and its application to through-the-wall radar imaging[C]. IEEE ICASS, Prague, Czech Republic, 2011: 2672-2675.
    陈一畅, 张群, 陈校平, 等. 多重测量矢量模型下的稀疏步进频率SAR成像算法[J]. 电子与信息学报, 2014,36(12): 2986-2993. doi: 10.3724/SP.J.1146.2013.01831.
    CHEN Yichang, ZHANG Qun, CHEN Xiaoping, et al. An imaging algorithm of sparse stepped frequency SAR based on multiple measurement vectors model[J]. Journal of Electronics Information Technology, 2014, 36(12): 2986-2993. doi: 10.3724/SP.J.1146.2013.01831.
    TROPP J A, GILBERT A C, and STRAUSS M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit[J]. Signal Processing, 2006, 86(3): 572-588. doi: 10.1016/j.sigpro.2005.05.030
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    CUMMING L G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation[M]. MA: Artech House, 2005: 393-394.
  • 加载中
计量
  • 文章访问数:  1386
  • HTML全文浏览量:  124
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-05-03
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回