高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种线性化的全双工MIMO收发器设计

张志亮 沈莹 邵士海 潘文生 唐友喜

张志亮, 沈莹, 邵士海, 潘文生, 唐友喜. 一种线性化的全双工MIMO收发器设计[J]. 电子与信息学报, 2016, 38(9): 2227-2232. doi: 10.11999/JEIT151363
引用本文: 张志亮, 沈莹, 邵士海, 潘文生, 唐友喜. 一种线性化的全双工MIMO收发器设计[J]. 电子与信息学报, 2016, 38(9): 2227-2232. doi: 10.11999/JEIT151363
ZHANG Zhiliang, SHEN Ying, SHAO Shihai, PAN Wensheng, TANG Youxi. Novel Design of Linear Full-duplex MIMO Radios[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2227-2232. doi: 10.11999/JEIT151363
Citation: ZHANG Zhiliang, SHEN Ying, SHAO Shihai, PAN Wensheng, TANG Youxi. Novel Design of Linear Full-duplex MIMO Radios[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2227-2232. doi: 10.11999/JEIT151363

一种线性化的全双工MIMO收发器设计

doi: 10.11999/JEIT151363
基金项目: 

国家自然科学基金(61471108, 61501093),国家科技重大专项(2014ZX03003001-002)

Novel Design of Linear Full-duplex MIMO Radios

Funds: 

The National Natural Science Foundation of China (61471108, 61501093), The National Major Projects (2014 ZX03003001-002)

  • 摘要: 针对全双工MIMO收发器发射通道非线性以及接收通道存在强烈自干扰的问题,该文提出一种使发射通道线性化并通过射频多抽头重建与数字重建消除自干扰的具有较低硬件成本与软件复杂度的设计方案:(1)基于改进的串扰消除和数字预失真(CTC-DPD)算法并复用反馈通道进行去耦合和数字预失真使发射通道线性化、等增益;(2)在接收通道加入可调衰减器并用多维梯度下降法基于接收的残留自干扰功率最小原则调整抽头参数;(3)基于频域信道估计进行数字自干扰重建。实现的20 MHz带宽LTE全双工22 MIMO通信样机,发射通道经过线性化后带内更平坦,而带外噪声抑制了约30 dB。射频和数字消除一轮调整共耗时约0.17 ms,总消除能力约75 dB。16QAM映射时全双工双向数据速率总和220 Mbps,相对单向时的110 Mbps实现了频谱效率的翻倍。通信样机证明了该方案的可行性。
  • ZHANG Zhongshan, CHAI Xiaomeng, LONG Keping, et al. Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection[J]. IEEE Communications Magazine, 2015, 53(5): 128-137. doi: 10. 1109/MCOM.2015.7105651.
    SABHARWAL A, SCHNITER P, GUO Dongning, et al. In-band full-duplex wireless: Challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637-1652. doi: 10.1109/JSAC.2014.2330193.
    LI Yi, GURSOY M C, and VELIPASALAR S. Throughput and mode selection in two-way MIMO systems under queuing constraints[C]. 2015 IEEE International Conference on Communications (ICC), London, United Kingdom, 2015: 2271-2276. doi: 10.1109/ICC.2015.7248663.
    BHARADIA D and KATTI S. Full duplex MIMO radios[C]. 11th USENIX Symposium on Networked Systems Design and Implementation, Seattle, WA, USA, 2014: 359-372.
    DUARTE M, SABHARWAL A, AGGARWAL V, et al. Design and characterization of a full-duplex multiantenna system for WiFi networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1160-1177. doi: 10.1109/ TVT.2013.2284712.
    ARYAFAR E, KHOJASTEPOUR M A, SUNDARESAN K, et al. MIDU: Enabling MIMO full duplex[C]. ACM The Eighteenth Annual International Conference on Mobile Computing and Networking (MobiCom12), Istanbul, Turkey, 2012: 257-268. doi: 10.1145/2348543.2348576.
    RIIHONEN T and WICHMAN R. Analog and digital self-interference cancellation in full-duplex MIMO-OFDM transceivers with limited resolution in A/D conversion[C]. 46th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, USA, 2012: 45-49. doi: 10.1109/ACSSC.2012.6488955.
    DING Lei, ZHOU G T, MORGAN D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 2004, 51(1): 159-165. doi: 10.1109/TCOMM.2003.822188.
    MORGAN D R, MA Zhengxiang, KIM J, et al. A generalized memory polynomial model for digital predistortion of RF power amplifiers[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3852-3860. doi: 10.1109/TSP.2006.879264.
    SURYASARMAN P M and SPRINGER A. A comparative analysis of adaptive digital predistortion algorithms for multiple antenna transmitters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(5): 1412-1420. doi: 10.1109/TCSI.2015.2403034.
    BASSAM S A, HELAOUI M, and GHANNOUCHI F M. Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(5): 1119-1128. doi: 10.1109/TMTT.2009.2017258.
    ZAYANI R, BOUALLEGUE R, and ROVIRAS D. Crossover neural network predistorter for the compensation of crosstalk and nonlinearity in MIMO OFDM systems[C]. The 21st IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2010), Instanbul, Turkey, 2010: 966-970. doi: 10.1109/PIMRC.2010.5671770.
    SURYASARMAN P, HOFLEHNER M, and SPRINGER A. Digital pre-distortion for multiple antenna transmitters[C]. The 43rd European Microwave Conference, Nuremberg, Germany, 2013: 412-415. doi: 10.1109/GlobalSIP.2013. 6737109.
    AMIRI M V, HELAOUI M, and GHANNOUCHI F M. Streamlined MIMO cross-over digital predistortion[C]. 2014 IEEE Radio and Wireless Symposium (RWS), Newport Beach, California, USA, 2014: 283-285. doi: 10.1109/RWS. 2014.6830132.
    BOYD S and VANDENBERGHE L. Convex Optimization [M]. Cambridge, U.K.: Cambridge University Press, 2004: 466-475.
    3GPP. TS25.814: Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA) (Release 7)[R]. 2006.
    3GPP. TS25.102: Technical Specification Group Radio Access Network; User Equipment (UE) radio transmission and reception (TDD) (Release 12)[R]. 2004.
  • 加载中
计量
  • 文章访问数:  1507
  • HTML全文浏览量:  101
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-03
  • 修回日期:  2016-03-21
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回