CHANG Y L, LIU J N, HAN C C, et al. Hyperspectral image classification using nearest feature line embedding approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 278-287. doi: 10.1109/TGRS.2013.2238635.
|
XUE Z H, DU P J, LI J, et al. Simultaneous sparse graph embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 6114-6133. doi: 10.1109/TGRS.2015.2432059.
|
李志敏, 张杰, 黄鸿, 等. 面向高光谱图像分类的半监督Laplace鉴别嵌入[J]. 电子与信息学报, 2015, 37(4): 995-1001. doi: 10.11999/JEIT140600.
|
LI Zhimin, ZHANG Jie, HUANG Hong, et al. Semi- supervised Laplace discriminant embedding for hyperspectral image classification[J]. Journal of Electronics Information Technology, 2015, 37(4): 995-1001. doi: 10.11999/ JEIT140600.
|
宋相法, 焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类[J]. 电子与信息学报, 2012, 34(2): 268-272. doi: 10.3724/SP.J.1146.2011.00540.
|
SONG Xiangfa and JIAO Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral information[J]. Journal of Electronics Information Technology, 2012, 34(2): 268-272. doi: 10.3724/SP.J.1146.2011.00540.
|
FENG Z X, YANG S Y, WANG S G, et al. Discriminative spectral-spatial margin-based semi-supervised dimensionality reduction of hyperspectral data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 224-228. doi: 10.1109/ LGRS.2014.2327224.
|
ROWEIS S T and SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. doi: 10.1126/science.290.5500.2323.
|
BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. doi: 10.1162/ 089976603321780317.
|
HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]. IEEE International Conference on Computer Vision, Beijing, 2005: 1208-1213. doi: 10.1109/ICCV.2005. 167.
|
HE X F and NIYOGI P. Locality preserving projections[C]. Advances in Neural Information Processing Systems, Whistler, B. C., Canada, 2003: 153-160.
|
YAN S C, XU D, ZHANG B Y, et al. Graph embedding and extensions: A general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2007, 29(1): 40-51. doi: 10.1109/CVPR.2005. 170.
|
SHAO Z and ZHANG L. Sparse dimensionality reduction of hyperspectral image based on semi-supervised local Fisher discriminant analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 31: 122-129. doi: 10.1016/j.jag.2014.03.015.CHEN X B, CAI Y F, CHEN
|
CHEN X B, CAI Y F, CHEN L, et al. Discriminant feature extraction for image recognition using complete robust maximum margin criterion[J]. Machine Vision and Applications, 2015, 26(7): 857-870. doi: 10.1007/s00138-015- 0709-7.
|
BACHMANN C M, AINSWORTH T L, and FUSINA R A. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441-454. doi: 10.1109/TGRS.2004.842292.
|
QIAO L S, CHEN S C, and TAN X Y. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1): 331-341. doi: 10.1016/j.patcog. 2009.05.005.
|
ELHAMIFAR E and VIDAL R. Sparse manifold clustering and embedding[C]. Advances in Neural Information Processing Systems, Granada, Spain, 2011: 55-63.
|
HUANG H and YANG M. Dimensionality reduction of hyperspectral images with sparse discriminant embedding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5160-5169. doi: 10.1109/TGRS.2015.2418203.
|
LU G F, JIN Z, and ZOU J. Face recognition using discriminant sparsity neighborhood preserving embedding[J]. Knowledge-Based Systems, 2012, 31(7): 119-127. doi: 10.1016/j.knosys.2012.02.014.
|
ZANG F and ZHANG J S. Discriminative learning by sparse representation for classification[J]. Neurocomputing, 2011, 74: 2176-2183. doi: 10.1016/j.neucom.2011.02.012.
|
SONG Y Q, NIE F P, ZHANG C S, et al. A unified framework for semi-supervised dimensionality reduction[J]. Pattern Recognition, 2008, 41(9): 2789-2799. doi: 10.1016/j. patcog.2008.01.001.
|
SONG Y Q, NIE F P, and ZHANG C S. Semi-supervised sub-manifold discriminant analysis[J]. Pattern Recognition Letters, 2008, 29(13): 1806-1813. doi: 10.1016/j.patrec.2008. 05.024.
|
ZHAO M B, LI B, WU Z, et al. Image classification via least square semi-supervised discriminant analysis with flexible kernel regression for out-of-sample extension[J]. Neurocomputing, 2015(153): 96-107. doi: 10.1016/j.neucom.2014.11.048.
|