高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏信道下基于稀疏贝叶斯学习的精简星座盲均衡算法

张凯 于宏毅 胡赟鹏 沈智翔

张凯, 于宏毅, 胡赟鹏, 沈智翔. 稀疏信道下基于稀疏贝叶斯学习的精简星座盲均衡算法[J]. 电子与信息学报, 2016, 38(9): 2255-2260. doi: 10.11999/JEIT151307
引用本文: 张凯, 于宏毅, 胡赟鹏, 沈智翔. 稀疏信道下基于稀疏贝叶斯学习的精简星座盲均衡算法[J]. 电子与信息学报, 2016, 38(9): 2255-2260. doi: 10.11999/JEIT151307
ZHANG Kai, YU Hongyi, HU Yunpeng, SHEN Zhixiang. Reduced Constellation Equalization Algorithm for Sparse Multipath Channels Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2255-2260. doi: 10.11999/JEIT151307
Citation: ZHANG Kai, YU Hongyi, HU Yunpeng, SHEN Zhixiang. Reduced Constellation Equalization Algorithm for Sparse Multipath Channels Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2255-2260. doi: 10.11999/JEIT151307

稀疏信道下基于稀疏贝叶斯学习的精简星座盲均衡算法

doi: 10.11999/JEIT151307
基金项目: 

国家自然科学基金(61201380, 61501517)

Reduced Constellation Equalization Algorithm for Sparse Multipath Channels Based on Sparse Bayesian Learning

Funds: 

The National Natual Science Foundation of China (61201380, 61501517)

  • 摘要: 针对稀疏信道的盲均衡问题,在精简星座均衡算法框架下建立线性模型,利用稀疏信道下均衡器固有的稀疏特性,引入具有稀疏促进作用的先验分布对均衡器系数加以约束,使用稀疏贝叶斯学习方法迭代求解均衡器系数得到最大后验估计值。该文提出的均衡方法属于数据复用类均衡算法的范畴,能够适用于数据较短的应用场合。与随机梯度方法相比,算法性能受均衡器长度影响较小,收敛后误符号率性能更好,仿真实验验证了算法的有效性。
  • 阮秀凯, 蒋啸, 刘莉, 等. 一族新的 Bussgang 类指数拓展多模盲均衡算法[J]. 电子与信息学报, 2013, 35(9): 2188-2193. doi: 10.3724/SP.J.1146.2012.01544.
    RUAN Xiukai, JIANG Xiao, LIU Li, et al. A novel Bussgang category of blind equalization with exponential expanded multi-modulus algorithm[J]. Journal of Electronics Information Technology, 2013, 35(9): 2188-2193. doi: 10.3724/SP.J.1146.2012.01544.
    YANG J, WERNER J J, and DUMONT G A. The multimodulus blind equalization and its generalized algorithms[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(5): 997-1015.
    HAN H D and DING Z. Steepest descent algorithm implementation for multichannel blind signal recovery[J]. IET Communications, 2012, 6(18): 3196-3203.
    ZHOU F, TAN J, FAN X, et al. A novel method for sparse channel estimation using super-resolution dictionary[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 1-11.
    SENOL H. Joint channel estimation and symbol detection for OFDM systems in rapidly time-varying sparse multipath channels[J]. Wireless Personal Communications, 2015, 82(3): 1161-1178.
    GELLER B, CAPELLANO V, BROSSIER J M, et al. Equalizer for video rate transmission in multipath underwater communications: Special issue on acoustic communications[J]. IEEE Journal of Oceanic Engineering, 1996, 21(2): 150-155.
    BERBERDIS K and RONTOGIANNIS A A. Efficient decision feedback equalizer for sparse multipath channels[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, 2000: 2725-2728.
    LEE F K H and MCLANE P J. Design of nonuniformly- spaced tapped-delay-line equalizers for sparse multipath channels[C]. Global Telecommunications Conference, Mumbai, India, 2001, 2: 1336-1343.
    VLACHOS E, LALOS A S, and BERBERIDIS K. Stochastic gradient pursuit for adaptive equalization of sparse multipath channels[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 413-423.
    HELMY A, HEDAYAT A, and AL-DHAHIR N. Robust weighted sum-rate maximization for the multi-stream MIMO interference channel with sparse equalization[J]. IEEE Transactions on Communications, 2015, 60(10): 3645-3659.
    SILVA L and GOMES J. Sparse channel estimation and equalization for underwater filtered multitone[C]. OCEANS 2015, Genova, Italy, 2015: 1-8.
    TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211-244.
    HANSEN T L, BADIU M, FLEURY B H, et al. A sparse Bayesian learning algorithm with dictionary parameter estimation[C]. Sensor Array and Multichannel Signal Processing Workshop, A Corua, Spain, 2014: 385-388.
    GODARD D N. Method and device for training an adaptive equalizer by means of an unknown data signal in a transmission system using double sideband-quadrature carrier modulation [P]. U.S. Patent 4, 309, 770. 1982.
    WIPF D P. Sparse estimation with structured dictionaries[C]. Advances in Neural Information Processing Systems, Granada, Spain, 2011: 2016-2024.
    KAY S. M. (美), 罗鹏飞, 张文明, 等译. 统计信号处理基础: 估计与检测理论[M]. 北京,电子工业出版社, 2003: 277-334.
    GOMAA A and AL-DHAHIR N. Sparse FIR equalization: a new design framework[C]. Vehicular Technology Conference, Budapest, Hungary, 2011: 1-5.
  • 加载中
计量
  • 文章访问数:  1407
  • HTML全文浏览量:  149
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2016-04-08
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回