高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于KL散度及多尺度融合的显著性区域检测算法

罗会兰 万成涛 孔繁胜

罗会兰, 万成涛, 孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法[J]. 电子与信息学报, 2016, 38(7): 1594-1601. doi: 10.11999/JEIT151145
引用本文: 罗会兰, 万成涛, 孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法[J]. 电子与信息学报, 2016, 38(7): 1594-1601. doi: 10.11999/JEIT151145
LUO Huilan, WAN Chengtao, KONG Fansheng. Salient Region Detection Algorithm via KL Divergence and Multi-scale Merging[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1594-1601. doi: 10.11999/JEIT151145
Citation: LUO Huilan, WAN Chengtao, KONG Fansheng. Salient Region Detection Algorithm via KL Divergence and Multi-scale Merging[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1594-1601. doi: 10.11999/JEIT151145

基于KL散度及多尺度融合的显著性区域检测算法

doi: 10.11999/JEIT151145
基金项目: 

国家自然科学基金(61105042, 61462035),江西省青年科学家培养项目(20153BCB23010)

Salient Region Detection Algorithm via KL Divergence and Multi-scale Merging

Funds: 

The National Natural Science Foundation of China (61105042, 61462035), The Young Scientist Training Project of Jiangxi Province (20153BCB23010)

  • 摘要: 基于对超像素颜色概率分布间KL散度的计算,以及对多尺度显著图的融合处理,该文提出一种新的显著性区域检测算法。首先,采用超像素算法多尺度分割图像,在各尺度下用分割产生的超像素为节点,并依据超像素分割数量对各超像素进行适当邻接连通扩展,构建无向扩展闭环连通图。 其次,依据颜色判别力聚类量化各超像素内颜色,统计颜色聚类标签的概率分布,用概率分布间KL散度的调和平均值为扩展闭环连通图的边加权,再依据区域对比度并结合边界连通性,获取各尺度下的显著图。 最后,平均融合各尺度下显著图,并进行优化处理,得到最终的显著图。 在一些大型参考数据集上进行大量实验表明,所提算法优于当前一些先进算法,具有较高精确度和召回率,并且可以产生平滑显著图。
  • ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    YANG J and YANG M H. Top-down visual saliency via joint CRF and dictionary learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012: 2296-2303.
    TONG N, LU H, RUAN X, et al. Salient object detection via bootstrap learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 1884-1892.
    ZHAO R, OUYANG W, LI H, et al. Saliency detection by multi-context deep learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 1265-1274.
    YAN Q, XU L, SHI J, et al. Hierarchical saliency detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, 2013: 1155-1162.
    ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
    YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166-3173.
    TONG N, LU H, ZHANG Y, et al. Salient object detection via global and local cues[J]. Pattern Recognition, 2015, 48(10): 3258-3267.
    KIM J, HAN D, TAI Y W, et al. Salient region detection via high-dimensional color transform[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 883-890.
    ACHANTA R, ESTRADA F, WILS P, et al. Salient region detection and segmentation[C]. International Conference on Computer Vision Systems, Heraklion, 2008: 66-75.
    CHENG M M, ZHANG G X, MITRA N J, et al. Global contrast based salient region detection[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Colorado Springs, 2011: 409-416.
    PERAZZI F, KRAHENBUHL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 733-740.
    HOU X and ZHANG L. Saliency detection: A spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency- tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1597-1604.
    吕建勇, 唐振民. 一种基于图的流形排序的显著性目标检测改进方法[J]. 电子与信息学报, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    Jianyong and TANG Zhenmin. An improved graph-based manifold ranking for salient object detection[J]. Journal of Electronics Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    WEI Y, WEN F, ZHU W, et al. Geodesic saliency using background priors[C]. Proceedings of the 12th European Conference on Computer Vision, Firenze, Italy, 2012: 29-42.
    蒋寓文, 谭乐怡, 王守觉. 选择性背景优先的显著性检测模型 [J]. 电子与信息学报, 2015, 37(1): 130-136. doi: 10.11999/ JEIT140119.
    JIANG Yuwen, TAN Leyi, and WANG Shoujue. Saliency detected model based on selective edges prior[J]. Journal of Electronics Information Technology, 2015, 37(1): 130-136. doi: 10.11999/JEIT140119.
    WANG J, LU H, LI X, et al. Saliency detection via background and foreground seed selection[J]. Neurocomputing, 2015, 152(C): 359-368.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    KHAN R, VAN DE WEIJER J, KHAN F S, et al. Discriminative color descriptors[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2866-2873.
    JOHNSON D B. Efficient algorithms for shortest paths in sparse networks[J]. Journal of the ACM (JACM), 1977, 24(1): 1-13.
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man Cybernetics, 1979, 9(1): 62-66.
    HE K, SUN J, and TANG X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
  • 加载中
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  216
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-13
  • 修回日期:  2016-03-15
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回