高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多量测向量模型下基于贝叶斯检验的快速OMP算法研究

李少东 陈文峰 杨军 马晓岩

李少东, 陈文峰, 杨军, 马晓岩. 多量测向量模型下基于贝叶斯检验的快速OMP算法研究[J]. 电子与信息学报, 2016, 38(7): 1731-1737. doi: 10.11999/JEIT151131
引用本文: 李少东, 陈文峰, 杨军, 马晓岩. 多量测向量模型下基于贝叶斯检验的快速OMP算法研究[J]. 电子与信息学报, 2016, 38(7): 1731-1737. doi: 10.11999/JEIT151131
LI Shaodong, CHEN Wenfeng, YANG Jun, MA Xiaoyan. Fast OMP Algorithm Based on Bayesian Test for Multiple Measurement Vectors Model[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1731-1737. doi: 10.11999/JEIT151131
Citation: LI Shaodong, CHEN Wenfeng, YANG Jun, MA Xiaoyan. Fast OMP Algorithm Based on Bayesian Test for Multiple Measurement Vectors Model[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1731-1737. doi: 10.11999/JEIT151131

多量测向量模型下基于贝叶斯检验的快速OMP算法研究

doi: 10.11999/JEIT151131

Fast OMP Algorithm Based on Bayesian Test for Multiple Measurement Vectors Model

  • 摘要: 目前多量测向量(Multiple Measurement Vectors, MMV)模型的稀疏重构算法存在两个问题:计算复杂度高和当重构的支撑集存在冗余时无法有效剔除。为同时提高MMV模型的重构效率和重构精度,该文提出一种MMV模型下基于贝叶斯检验的快速正交匹配追踪(Fast Orthogonal Matching Pursuit based on Bayesian Testing, FOMP-BT)算法。首先,通过新原子组选和warm start求逆的思想来减少算法总的迭代次数以及每次迭代的运算量,以提高算法的重构效率;其次,利用贝叶斯检验的思想剔除冗余支撑集以提高重构精度;最后对所研究的算法从参数选择以及计算复杂度等方面进行了理论分析。仿真结果表明,所提算法具有重构精度高、速度快以及对噪声有较好的鲁棒性等优势。
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    ELDAR Y C. Sampling Theory Beyond Band Limited Systems[M]. Cambridge University Press, 2015: 1-8. doi: http: //dx.doi.org/10.1017/CBO9780511762321.
    SHANE F C, BHASKAR D R, KJERSTI E, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488.
    CHEN Jie and HUO Xiaoming. Theoretical results on sparse representations of multiple-measurement vectors[J]. IEEE Transaction on Signal Processing, 2006, 54(12): 4634-4643.
    陈一畅, 张群, 陈校平, 等. 多重测量矢量模型下的稀疏步进频率SAR成像算法[J]. 电子与信息学报, 2014, 36(12): 2987-2993. doi: 10.3724/SP.J.1146.2013.01831.
    CHEN Yichang, ZHANG Qun, CHEN Xiaoping, et al. Imaging algorithm of sparse stepped fequency SAR based on multiple measurement vectors model[J]. Journal of Electuonics Information Technology, 2014, 36(12): 2987-2993. doi: 10.3724/SP.J.1146.2013.01831.
    HEKHAR S, PATEL V M, NASRABADI N M , et al. Joint sparse representation for robust multimodal biometrics recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 113-126.
    李志林, 陈后金, 李居朋, 等. 一种有效的压缩感知图像重建算法[J]. 电子学报, 2011, 39(12): 2796-2800.
    LI Zhilin, CHEN Houjin, LI Jupeng, et al. An eficient algorithm for compressed sensing image reconstruction[J]. Acta Electronica Sinica, 2011, 39(12): 2796-2800.
    ZHAO Tan and NEHORAI A. Sparse direction of arrival estimation using co-prime arrays with off-grid targets[J]. IEEE Signal Processing Letters, 2014, 21(1): 26-29.
    王泽涛, 段克清, 谢文冲, 等. 基于SA-MUSIC 理论的联合稀疏恢复STAP算法[J]. 电子学报, 2015, 43(5): 846-853.
    WANG Zetao, DUAN Keqing, XIE Wenchong, et al. A joint sparse recovery STAP method based on SA-MUSIC[J]. Acta Electronica Sinica, 2015, 43(5): 846-853.
    TAO Yu, ZHANG Gong, and ZHANG Jindong. Guaranteed stability of sparse recovery in distributed compressive sensing MIMO Radar[J]. International Journal of Antennas and Propagation, 2015, Article ID 421740: 1-10.
    JIN Yuzhe and RAO B D. Support recovery of sparse signals in the presence of multiple measurement vectors[J]. IEEE Transaction on Information Theory, 2013, 59(5): 3139-3156.
    王法松, 张林让, 周宇. 压缩感知的多重测量向量模型与算法分析[J]. 信号处理, 2012, 28(6): 785-792.
    WANG Fasong, ZHANG Linrang, and ZHOU Yu. Multiple measurement vectors for compressed sensing: model and algorithms analysis[J]. Journal of Signal Processing, 2012, 28(6): 785-792.
    GUAN Gui, WAN Qun, and ADACHI F. Direction of arrival estimation using modified orthogonal matching pursuit algorithm[J]. International Journal of the Physical Sciences, 2011, 6(22): 5230-5234.
    BLANCHARD J D, CERMAK M, HANLE D, et al. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694-1704.
    ZHANG Y, YE Z F, XU X, et al. Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning[J]. Signal Processing, 2014, 98: 97-201.
    张贤达. 矩阵分析与应用(第2版)[M]. 北京: 清华大学出版社, 2013: 54-64.
    ZHANG Xianda. Matrix Analysis and Applications (Second Edition)[M]. Beijing: Tsinghua University Press, 2013: 54-64.
    ZHANG Jingxiong and YANG Ke. Informational analysis for compressive sampling in radar imaging[J]. Sensors 2015, 15(4): 7136-7155. doi: 10.3390/s150407136.
    甘伟, 许录平, 苏哲, 等. 基于贝叶斯假设检验的压缩感知重构[J]. 电子与信息学报, 2011, 33(11): 2640-2646. doi: 10. 3727/SP.J.1146.2011.00151.
    GAN Wei, XU Luping, SU Zhe , et al. Bayesian hypothesis testing based recovery for compressed sensing[J]. Journal of Electronics Information Technology, 2011,33(11): 2640-2646. doi: 10.3727/SP.J.1146.2011.00151.
    杨成, 冯巍, 冯辉, 等. 一种压缩采样中的稀疏度自适应子空间追踪算法[J]. 电子学报, 2010, 38(8): 1914-1917.
    YANG Cheng, FENG Wei, FENG Hui, et al. A sparsity adaptive subspace pursuit algorithm for compressive sampling[J]. Acta Electronica Sinica, 2010, 38(8): 1914-1917.
  • 加载中
计量
  • 文章访问数:  1462
  • HTML全文浏览量:  137
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2016-02-25
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回