高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合GLCM与三阶张量建模的在线目标跟踪

金广智 石林锁 崔智高 刘浩 牟伟杰

金广智, 石林锁, 崔智高, 刘浩, 牟伟杰. 结合GLCM与三阶张量建模的在线目标跟踪[J]. 电子与信息学报, 2016, 38(7): 1609-1615. doi: 10.11999/JEIT151108
引用本文: 金广智, 石林锁, 崔智高, 刘浩, 牟伟杰. 结合GLCM与三阶张量建模的在线目标跟踪[J]. 电子与信息学报, 2016, 38(7): 1609-1615. doi: 10.11999/JEIT151108
JIN Guangzhi, SHI Linsuo, CUI Zhigao, LIU Hao, MU Weijie. Online Object Tracking Based on Gray-level Co-occurrence Matrix and Third-order Tensor[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1609-1615. doi: 10.11999/JEIT151108
Citation: JIN Guangzhi, SHI Linsuo, CUI Zhigao, LIU Hao, MU Weijie. Online Object Tracking Based on Gray-level Co-occurrence Matrix and Third-order Tensor[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1609-1615. doi: 10.11999/JEIT151108

结合GLCM与三阶张量建模的在线目标跟踪

doi: 10.11999/JEIT151108
基金项目: 

国家自然科学基金(61501470)

Online Object Tracking Based on Gray-level Co-occurrence Matrix and Third-order Tensor

Funds: 

The National Natural Science Foundation of China (61501470)

  • 摘要: 为提高目标跟踪算法对多种目标表观变化场景的自适应能力和跟踪精度,论文提出一种结合灰度共生(GLCM)与三阶张量建模的目标优化跟踪算法。该算法首先提取目标区域的灰度信息,通过GLCM的高区分度特征对目标进行二元超分描述,并结合三阶张量理论融合目标区域的多视图信息,建立起目标的三阶张量表观模型。然后利用线性空间理论对表观模型进行双线性展开,通过在线模型特征值描述与双线性空间的增量特征更新,明显降低模型更新时的运算量。跟踪环节,建立二级联合跟踪机制,结合当前时刻信息通过在线权重估计构建动态观测模型,以真实目标视图为基准建立静态观测模型对跟踪估计动态调整,以避免误差累积出现跟踪漂移,最终实现对目标的稳定跟踪。通过与典型算法进行多场景试验对比,表明该算法能够有效应对多种复杂场景下的运动目标跟踪,平均跟踪误差均小于9像素。
  • YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
    HO J, LEE K C, YANG M H, et al. Visual tracking using learned linear subspaces[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 782-789.
    LEE K C and KRIEGMAN D. Online learning of probabilistic appearance manifolds for video-based recognition and tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 852-859.
    ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2013, 77(3): 125-141.
    LATHAUWER L, MOOR B, and VANDEWALLE J. On the best rank-1 and approximation fhigherorder tensors[J]. SIAM Journal of Matrix Analysis and Applications, 2000, 21(4): 1324-1342.
    LI X, HU W, ZHANG Z, et al. Visual tracking via incremental Log-Euclidean Riemannian sub-space learning [C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 578-585.
    LI X, HU W, ZHANG Z, et al. Robust visual tracking based on incremental tensor subspace learning[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2012: 1008-1016.
    钟桦, 杨晓鸣, 焦李成. 基于多分辨率共生矩阵的纹理图像分类[J]. 计算机研究与发展, 2014, 48(11): 1991-1999.
    ZHONG Ye, YANG Xiaoming, and JIAO Licheng. Texture classification based on multiresolution co-occurrence matrix [J]. Journal of Computer Research and Development, 2014, 48(11): 1991-1999.
    薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析[J]. 电子学报, 2006, 34(1): 155-158.
    BO Hua, MA Fulong, and JIAO Licheng. Research on computation of GLCM of image texture[J]. Acta Electronica Sinica, 2006, 34(1): 155-158.
    CLAUSI D A and DENG H. Design-based texture Feature using Gabor filters and co-occurrence probabilities[J]. IEEE Transactions on Image Processing, 2005, 14(7): 925-936.
    吴光文, 张爱军, 王昌明. 一种用于压缩感知理论的投影矩阵优化算法[J]. 电子与信息学报,2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450.
    WU Guangwen, ZHANG Aijun, and WANG Changming. Novel optimization method for projection matrix in compress sensing theory[J]. Journal of Electronics Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT 141450.
    KHAN Z H and GUI Y H. Online domain-shift learning and object tracking based on nonlinear dynamic models and particle filters on Riemannian manifolds[J]. Computer Vision and Image Understanding, 2014, 15(6): 97-114.
    齐苑辰, 吴成东, 陈东岳, 等. 基于稀疏表达的超像素跟踪算法[J]. 电子与信息学报, 2015, 37(3): 529-535. doi: 10.11999/ JEIT140374.
    QI Yuanchen, WU Chengdong, CHEN Dongyue, et al. Superpixel tracking based on sparse representation[J]. Journal of Electronics Information Technology, 2015, 37(3): 529-535. doi: 10.11999/JEIT140374.
    CHENG X, LI N, ZHOU T, et al. Object tracking via collaborative multi-task learning and appearance model updating[J]. Applied Soft Computing, 2015, 31: 81-90.
    ZHONG W, LU H, and YANG M H. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
    WU Y, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411-2418.
  • 加载中
计量
  • 文章访问数:  1728
  • HTML全文浏览量:  124
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-29
  • 修回日期:  2016-03-03
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回